Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The prediction of the coastal bed evolution at an annual scale utilizing process-based models is usually a complex task requiring significant computational resources. To compensate for this, accelerating techniques aiming at reducing the amount of input parameters are often employed. In the framework of this research, a comprehensive evaluation of the capacity of the widely-used K-Means clustering algorithm as a method to obtain representative wave conditions was undertaken. Various enhancements to the algorithm were examined in order to improve model results. The examined tests were implemented in the sandy coastline adjacent to the port of Rethymno, Greece, utilizing an annual dataset of wave characteristics using the model MIKE21 Coupled Model FM. Model performance evaluation was carried out for each test simulation by comparing results to a “brute force” one, containing the bed level changes induced from the annual time series of hourly changing offshore sea state wave characteristics, deeming the results very satisfactory. The best-performing configurations were found to be related to the implementation of a filtering methodology to eliminate low-energy sea states from the dataset. Employment of clustering algorithms utilizing “smart” configurations to improve their performance could become a valuable tool for engineers desiring to obtain an accurate representation of annual bed level evolution, while simultaneously reducing the required computational effort.
Czasopismo
Rocznik
Tom
Strony
267--285
Opis fizyczny
Bibliogr. 62 poz., fot., rys., tab., wykr.
Twórcy
autor
- Laboratory of Harbour Works, School of Civil Engineering, National Technical University of Athens, Zografou, Greece
autor
- Laboratory of Harbour Works, School of Civil Engineering, National Technical University of Athens, Zografou, Greece
Bibliografia
- 1. Afentoulis, V., Kragiopoulou, E., Skarlatou, E., Moschos, E., Lykou, A., Makropoulos, C., Tsoukala, V., 2017. Coastal Processes Assessment Under Extreme Storm Events Using Numerical Modelling Approaches. Environ. Process. 4, 731-747.
- 2. Afentoulis, V., Papadimitriou, A., Belibassakis, K., Tsoukala, V., 2022. A coupled model for sediment transport dynamics and prediction of seabed morphology with application to 1DH/2DH coastal engineering problems. Oceanologia 64 (3), 514-534. https://doi.org/10.1016/j.oceano.2022.03.007
- 3. Arthur, D., Vassilvitskii, S., 2007. K-means++: The advantages of careful seeding. In: Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms. Bailard, J.A., 1985. Simplified model for longshore sediment transport. In: Proceedings of the Coastal Engineering Conference. ASCE, 1454-1470. https://doi.org/10.9753/icce.v19.99
- 4. Baldock, T.E., Holmes, P., Bunker, S., Van Weert, P., 1998. Crossshore hydrodynamics within an unsaturated surf zone. Coast. Eng. 34, 173-196. https://doi.org/10.1016/S0378-3839(98)00017-9
- 5. Battjes, J.A., Janssen, J.P.F.M., 1978. Energy loss and set-up due to breaking of random waves. In: Proceedings of the 16th International Conference on Coastal Engineering. Hamburg, Germany.
- 6. Battjes, J.A., Janssen, T.T., 2009. Random wave breaking models — history and discussion. In: Proceedings of the 31st Coastal Engineering Conference. Hamburg, Germany. https://doi.org/10.1142/9789814277426_0002
- 7. Benedet, L., Dobrochinski, J.P.F., Walstra, D.J.R., Klein, A.H.F., Ranasinghe, R., 2016. A morphological modeling study to compare different methods of wave climate schematization and evaluate strategies to reduce erosion losses from a beach nourishment project. Coast. Eng. 112, 69-86. https://doi.org/10.1016/j.coastaleng.2016.02.005
- 8. Bezdek, J.C., 1981. Pattern Recognition with Fuzzy Objective Function Algorithms. Springer, New York. https://doi.org/10.1007/978-1-4757-0450-1
- 9. Bouws, E., Günther, H., Rosenthal, W., Vincent, C., 1985. Similarity of the wind wave spectrum in finite depth water: 1. Spectral form. J. Geophys. Res. Oceans 90, 975-986. https://doi.org/10.1029/JC090iC01p00975
- 10. Brown, J.M., Davies, A.G., 2009. Methods for medium-term prediction of the net sediment transport by waves and currents in complex coastal regions. Cont. Shelf Res. 29, 1502-1514. https://doi.org/10.1016/j.csr.2009.03.018
- 11. Camus, P., Mendez, F.J., Medina, R., Cofiño, A.S., 2011. Analysis of clustering and selection algorithms for the study of multivariate wave climate. Coast. Eng. 58, 453-462. https://doi.org/10.1016/j.coastaleng.2011.02.003
- 12. Chawla, A., Özkan-Haller, T.H., Kirby, J.T., 1998. Spectral model for wave transformation over irregular bathymetry. J. Waterw. Port Coast. Ocean Eng. 124 (4). https://doi.org/10.1061/(ASCE)0733-950X(1998)124:4(189)
- 13. Chondros, M., Metallinos, A., Memos, C., Karambas, T., Papadimitriou, A., 2021. Concerted nonlinear mild-slope wave models for enhanced simulation of coastal processes. Appl. Math. Model. 91, 508-529. https://doi.org/10.1016/j.apm.2020.08.027
- 14. Copernicus Marine Service, n.d., https://marine.copernicus.eu/(accessed 11/10/2022).
- 15. Courant, R., Friedrichs, K., Lewy, H., 1967. On the Partial Difference Equations of Mathematical Physics. IBM J. Res. Dev. 11, 215-234. https://doi.org/10.1147/rd.112.0215
- 16. Dalrymple, R.A., Kirby, J.T., 1988. Models for very wide-angle water waves and wave diffraction. J. Fluid Mech. 192, 33-50. https://doi.org/10.1017/S0022112088001776
- 17. Daly, C.J., Bryan, K.R., Gonzalez, M.R., Klein, A.H.F., Winter, C., 2014. Effect of selection and sequencing of representative wave conditions on process-based predictions of equilibrium embayed beach morphology. Ocean Dynam. 64, 863-877. https://doi.org/10.1007/s10236-014-0730-9
- 18. de Queiroz, B., Scheel, F., Caires, S., Walstra, D.J., Olij, D., Yoo, J., Reniers, A., de Boer, W., 2019. Performance evaluation of wave input reduction techniques for modeling inter-annual sandbar dynamics. J. Mar. Sci. Eng. 7, 148. https://doi.org/10.3390/jmse7050148
- 19. de Vriend, H.J., Zyserman, J., Nicholson, J., Roelvink, J.A., Péchon, P., Southgate, H.N., 1993. Medium-term 2DH coastal area modelling. Coast. Eng. 21, 193-223. https://doi.org/10.1016/0378-839(93)90050-I
- 20. DHI, 2014. Coupled Model FM (MIKE 21/3 FM). User Guide. Danish Hydraulic Institute.
- 21. DHI, 2009a. Spectral Wave Module. Scientific Documentation. Danish Hydraulic Institute.
- 22. DHI, 2009b. 21&3 Flow Model FM, Hydrodynamic and Transport Module, Scientific Documentation. Danish Hydraulic Institute.
- 23. DHI, 2009c. Flow Model FM Sand Transport Module, Scientific Documentation. Danish Hydraulic Institute.
- 24. Drønen, N., Kristensen, S., Taaning, M., Elfrink, B., Deigaard, R., 2011. Long term modeling of shoreline response to coastal structures. In: Proceedings of the Coastal Sediments Conference. Miami, Florida, USA, 2—6 May 2011. https://doi.org/10.1142/9789814355537_0073
- 25. ERA5-INTERIM, 1959—present. ERA5-INTERIM: hourly data on single levels from 1959 to present, [dataset]. https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview/ (accessed 27/12/2022).
- 26. Fairley, I., Lewis, M., Robertson, B., Hemer, M., Masters, I., Horrillo-Caraballo, J., Karunarathna, H., Reeve, D.E., 2020. A classification system for global wave energy resources based on multivariate clustering. Appl. Ener. 262, 114515. https://doi.org/10.1016/j.apenergy.2020.114515
- 27. Gad, F.-K., Hatiris, G.-A., Loukaidi, V., Dimitriadou, S., Drakopoulou, P., Sioulas, A., Kapsimalis, V., 2018. Long-Term Shoreline Displacements and Coastal Morphodynamic Pattern of North Rhodes Island. Greece. Water 10, 849. https://doi.org/10.3390/w10070849
- 28. Guha, S., Rastogi, R., Shim, K., 2001. CURE: An efficient clustering algorithm for large databases. Inf. Syst. 26, 35-58. https://doi.org/10.1145/276305.276312
- 29. Hallermeier, R.J., 1980. A profile zonation for seasonal sand beaches from wave climate. Coast. Eng. 4, 253-277. https://doi.org/10.1016/S0306-379(01)00008-4
- 30. Hasselmann, K., Barnett, T.P., Bouws, E., Carlson, H., Cartwright, D.E., Enke, K., Ewing, J.A., Gienapp, H., Hasselmann, D.E., Kruseman, P., Meerburg, A., Mller, P., Olbers, D.J., Richter, K., Sell, W., Walden, H., 1973. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Ergnzungsheft zur Deutschen Hydrographischen Zeitschrift Reihe A(8) (12), 95. Oceanologia 66 (2024) 267-285
- 31. Houston, J.R., 1995. Beach-fill volume required to produce specific dry beach width. Coast. Eng. Technical Note CETN II-32. US Army Corps Eng. Waterw. Exp. Station, Vicksburg, Mississippi. Janssen, T.T., Battjes, J.A., 2007. A note on wave energy dissipation over steep beaches. Coast. Eng. 54, 711-716. https://doi.org/10.1016/j.coastaleng.2007.05.006
- 32. Kaergaard, K., Mortensen, S.B., Kristensen, S.E., Deigaard, R., Teasdale, R., Hunt, S., 2014. Hybrid shoreline modelling of shoreline protection Schemes, Palm Beach, Queensland, Australia. In: Proceedings of the 34th Coastal Engineering Conference. Seoul, Korea 15—20 June 2014. https://doi.org/10.9753/icce.v34.sediment.23
- 33. Kamphuis, J.W., 1991. Alongshore Sediment Transport Rate. J. Waterw. Port Coast. Ocean Eng. 117, 624-640. https://doi.org/10.1061/(asce)0733-950x(1991)117:6(624)
- 34. Kelpšaitė-Rimkienė, L., Parnell, K.E., Žaromskis, R., Kondrat, V., 2021. Cross-shore profile evolution after an extreme erosion event—Palanga. Lithuania. J. Mar. Sci. Eng. 9, 1-15. https://doi.org/10.3390/jmse9010038
- 35. Kirby, J.T., Dalrymple, R.A., 1983. A parabolic equation for the combined refraction diffraction of Stokes waves by mildly varying topography. J. Fluid Mech. 136, 453-466. https://doi.org/10.1017/S0022112083002232
- 36. Knaapen, M.A.F., Joustra, R., 2012. Morphological acceleration factor: usability, accuracy and run time reductions. In: Proceedings of the XIXth TELEMAC-MASCARET User Conference. Oxford, UK 18—19 October 2012.
- 37. Komar, P., Inman, D., 1970. Longshore sand transport on beaches. J. Geophys. Res. 75, 5914-5927. https://doi.org/10.1029/jc075i030p05914
- 38. Komen, G.J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., Janssen, P.A.E.M., 1994. Dynamics and Modelling of Ocean Waves. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511628955
- 39. Korres, G., Ravdas, M., Zacharioudaki, A., 2019. Mediterranean Sea Waves Hindcast (CMEMS MED-Waves) [dataset]. https://doi.org/10.25423/CMCC/MEDSEA_HINDCAST_WAV_006_012
- 40. Kraus, N.C., Larson, M., Wise, R.A., 1998. Depth of Closure in Beach-fill Design. Coast. Eng. Technical Note CETN, II-40. US Army Coast. Hydraul. Lab., Corps Eng. Waterw. Exp, Station. Vicksburg, Mississippi.
- 41. Lesser, G.R., 2009. An Approach to Medium-term Coastal Morphological Modelling PhD thesis. Delft University of Technology, Netherlands.
- 42. MacQueen, J., 1967. Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symp. Math. Stat. Probab., 1, 281-297.
- 43. Martzikos, N., Afentoulis, V., Tsoukala, V., 2018. Storm clustering and classification for the port of Rethymno in Greece. Water Util. J. 20, 67-79.
- 44. Mase, H., Kirby, J.T., 1992. Hybrid frequency-domain KdV equation for random wave transformation. In: Proceedings of the 12 th Coastal Engineering Conference. Venice, Italy, October 4—9 1992. https://doi.org/10.1061/9780872629332.035
- 45. Miche, M., 1951. Le pouvoir réfléchissant des ouvrages maritimes exposés à l’action de la houle. Annales de Ponts et Chaussées Technical Report.
- 46. Munkres, J., 1957. Algorithms for the assignment and transportation problems. J. Soc. Ind. Appl. Math. 5, 32-38.
- 47. Papadimitriou, A., Panagopoulos, L., Chondros, M., Tsoukala, V., 2020. A wave input-reduction method incorporating initiation of sediment motion. J. Mar. Sci. Eng. 8. https://doi.org/10.3390/JMSE8080597
- 48. Papadimitriou, A., Tsoukala, V., Karambas, T., 2023. Revisiting and enhancing the concept of equivalent wave heights. In: Proceedings of the 2nd International Conference Design, Management of Port, Coastal and Offshore Works (DMPCO 2023). Thessaloniki, Greece, May 24—27 2023.
- 49. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., 2011. Scikit-learn: Machine Learning in Python JMLR 12, 2825-2830.
- 50. Pierson, W.J., Moskowitz, L., 1964. A proposed spectral form for fully developed wind seas based on the similarity of S. A. Kitaigorodskii. J. Geoph. Res. 69, 5181-5190.
- 51. Putnam, J.A., Johson, J.W., 1949. The dissipation of wave energy by bottom friction. Eos Trans. AGU 30, 67-74. https://doi.org/10.1029/TR030i001p00067
- 52. Roelvink, D., Reniers, A., 2012. A guide to modeling coastal morphology, 1st edition Word Scientific, Singapore. https://doi.org/10.1142/9789814304269
- 53. Splinter, K.D., Golshani, A., Stuart, G., Tomlinson, R., 2011. Spatial and Temporal Variability of Longshore Transport Along Gold Coast, Australia. In: Proceedings of the 32nd Coastal Engineering Conference, Shanghai, China. https://doi.org/10.9753/icce.v32.sediment.95
- 54. Sutherland, J., Peet, A.H., Soulsby, R.L., 2004. Evaluating the performance of morphological models. Coast. Eng. 51, 917-939. https://doi.org/10.1016/j.coastaleng.2004.07.015
- 55. Tsiaras, A.-C., Karambas, T., Koutsouvela, D., 2020. Design of Detached Emerged and Submerged Breakwaters for Coastal Protection: Development and Application of an Advanced Numerical Model. J. Waterw. Port Coast. Ocean Eng. 146, 04020012. https://doi.org/10.1061/(asce)ww.1943-5460.0000566
- 56. Tsoukala, V., Chondros, M., Kapelonis, Z., Martzikos, N., Lykou, A., Belibassakis, K., Makropoulos, C., 2016. An integrated wave modelling framework for extreme and rare events for climate change in coastal areas — the case of Rethymno, Crete. Oceanologia 58 (2), 71-89. https://doi.org/10.1016/j.oceano.2016.01.002
- 57. van Duin, M.J.P., Wiersma, N.R., Walstra, D.J.R., Van Rijn, L.C., Stive, M.J.F., 2004. Nourishing the shoreface: observations and hindcasting of the Egmond case, The Netherlands. Coast. Eng. 51, 813-817. https://doi.org/10.1016/j.coastaleng.2004.07.011
- 58. van Rijn, L.C., 1986. Sediment pick-up functions. Applications of sediment Pick-up function. J. Hydraul. Eng. 112, 867-874. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:10(1494)
- 59. van Rijn, L.C., Bisschop, R., van Rhee, C., 2019. Modified Sediment Pick-Up Function. J. Hydraul. Eng. 145(1), 060180171-060180176. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001549
- 60. van Rijn, L.C., Wasltra, D.J.R., Grasmeijer, B., Sutherland, J., Pan, S., Sierra, J.P., 2003. The predictability of cross-shore bedevolution of sandy beaches at the time scale of storms and seasons using process-based profile models. Coast. Eng. 47, 295-327. https://doi.org/10.1016/S0378-3839(02)00120-5
- 61. Walstra, D.J.R., Hoekstra, R., Tonnon, P.K., Ruessink, B.G., 2013. Input reduction for long-term morphodynamic simulations in wave-dominated coastal settings. Coast. Eng. 77, 57-70. https://doi.org/10.1016/j.coastaleng.2013.02.001
- 62. Zhao, Y., Anastasiou, K., 1993. Economical random wave propagation modelling taking into account non-linear amplitude dispersion. Coast. Eng. 20, 59-83. https://doi.org/10.1016/0378-3839(93)90055-D
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de3d8ba3-63cb-4b64-881e-70d0503086ef