PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

A deep learning approach to classify volcano activity using tremor data joint with infrasonic event counts and radar backscatter power; case study: mount Etna, Italy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a method is presented to classify volcano activity into three classes, namely quiet, strombolian, and paroxysm. The method is based on training a six-layered deep neural network (DNN) model using these signals as inputs (features): time series of the number of distances of infrasonic events, radar backscatter power, RMS of tremor in five stations close to craters of the volcano, tilt derivative, and seismic tremor source depth. The method was tested on the data related to a period of five years, and the results were concluded using indexes of precision, recall, F1 score, and Cohen's Kappa coefficient were calculated to evaluate the qualification of the classification. Also, the results were compared to Bayesian network (BN), K-nearest neighbors (KNN), and decision tree (DT) methods. Decision learning trees and KNN are popular machine learning algorithms belonging to the class of supervised learning algorithms. They mimic the human level thinking and, differing from neural networks, are not black box models. The comparisons reveal the proposed method, especially in classifying both strombolian and paroxysm classes. This advantage makes the presented method a more reliable tool for practical use in the volcano monitoring control rooms.
Czasopismo
Rocznik
Strony
131--142
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
  • Department of Physics, Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
  • Department of Physics, Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
  • Department of Physics, Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
  • Department of Physics, Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
  • Instituto Nazionale Di Geofisica E Vulcanologia, Osservatorio Etneo, Catania, Italy
Bibliografia
  • 1. Aloisi M, Bonaccorso A, F. Cannavo F. and G.M. Currenti, (2018) Coupled short- and medium-term geophysical signals at etna volcano: using deformation and strain to infer magmatic processes from 2009 to 2017. Front Earth Sci 6:109. https://doi.org/10.3389/ feart.2018.00109
  • 2. Anantrasirichai N, Biggs J, Albino F, Hill P, Bull DR (2018) Application of machine learning to classification of volcanic deformation in routinely generated InSAR data. J Geophys Res: Solid Earth 123:6592-6606. https://doi.org/10.1029/2018JB015911
  • 3. Anantrasirichai N, Biggs J, Albino F, Bull DR (2019). A deep learning approach to detecting volcano deformation from satellite imagery using synthetic datasets. ArXiv, abs/1905.07286
  • 4. Behncke B, Branca S, Corsaro RA, De Beni E, Miraglia L, Proietti C (2014) The 2011-2012 summit activity of Mount Etna: birth, growth and products of the new SE crater. J Volcanol Geotherm Res 270:10-21. https://doi.org/10.1016/j.jvolgeores. 2013.11.012
  • 5. Bonaccorso AA, Cannata RA, Corsaro G, Di Grazia S, Gambino F, Greco L, Miraglia A, Pistorio A (2011) Multidisciplinary investigation on a lava fountain preceding a flank eruption: the 10 491 May 2008 Etna case. Geochem Geophys Geosyst 12:Q07009. https://doi.org/10.1029/2010GC003480
  • 6. Bonforte A, Cannavo F, Gambino S, Guglielmino F (2021) Combining high-and low-rate geodetic data analysis for unveiling rapid magma transfer feeding a sequence of violent summit paroxysms at etna in late 2015. Appl Sci 11(10):4630
  • 7. Cannata A, Catania A, Alparone S, Gresta S (2008) Volcanic tremor at Mt. Etna: inferences on magma dynamics during effusive and explosive activity. J Volcanol Geotherm Res 178(1): 19-31. https://doi.org/10.1016/j.jvolgeores.2007.11.027
  • 8. Cannata A, Di Grazia G, Aliotta M, Cassisi C, Montalto P, Patane D (2013) Monitoring seismo-volcanic and infrasonic signals at vol- canoes: Mt. Etna case study. Pure Appl Geophys 170(11):1751- 1771. https://doi.org/10.1007/s00024-012-0634-x
  • 9. Cannavo F, Cannata A, Cassisi C, Di Grazia G, Montalto P, Prestifilippo M, Privitera E, Coltelli M, Gambino S (2017) A multivariate probabilistic graphical model for real-time volcano monitoring on Mount Etna. J Geophys Res Solid Earth 122:3480-3496. https://doi.org/10.1002/2016JB013512
  • 10. Corradino C, Ganci G, Cappello A, Bilotta G, Calvari S, Del Negro C (2020) Recognizing eruptions of mount etna through machine learning using multiperspective infrared images. Remote Sens 12(6):970. https://doi.org/10.3390/rs12060970
  • 11. De Beni E, Behncke B, Branca S, Nicolosi I, Carluccio R, D’Ajello Caracciolo F, Chiappini M (2015) The continuing story of Etna’s new southeast crater (2012-2014): evolution and volume calculations based on field surveys and aerophotogrammetry. J Volcanol Geotherm Res 303:175-186. https://doi.org/10.1016/j. jvolgeores.2015.07.021
  • 12. Donnadieu F, Freville P, Hervier C, Coltelli M, Scollo S, Prestifilippo M, Cacault P (2016) Near-source doppler radar monitoring of tephra plumes at Etna. J Volcanol Geotherm Res 312:26-39
  • 13. Esmaeili R, Kimiaefar R, Hajian A, Soleimani-Chamkhorami K, Hodhodi M, (2024) Performance enhancement of deep neural network using fusional data assimilation and divide-and-conquer approach; case study: earthquake magnitude calculation. Neural Comput Appl. https://doi.org/10.1007/s00521-024-10002-x
  • 14. Ferro A, Gambino S, Panepinto S, Falzone G, Laudani G, Ducarme B (2011) High precision tilt observation at Mt. Etna Volcano, Italy, Acta Geophys 59(3):618-632. https://doi.org/10.2478/ s11600-011-0003-7
  • 15. Gareth J, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning, vol 112. Springer, New York, NY
  • 16. Greco F, Currenti G, Palano M, Pepe A, Pepe S (2016) Evidence of a shallow persistent magmatic reservoir from joint inversion of gravity and ground deformation data: the 25-26 october 2013 Etna lava fountaining event. Geophys Res Lett. https://doi.org/ 10.1002/2016GL068426
  • 17. Gulli A, Pal S. Deep learning with Keras. Packt Publishing Ltd; 2017.
  • 18. Hajian A, Cannav'o F, Greco F, Nunnari G (2019) Classification of mount etna (Italy) volcanic activity by machine learning approaches. Anna Geophys 62:1-11. https://doi.org/10.4401/ ag-8049
  • 19. Hajian, A, Nunnari, G, Kimiaefar R (2023) Intelligent methods with applications in volcanology and seismology. Springer. https:// doi.org/10.1007/978-3-031-15432-4
  • 20. King G, Zeng L (2001) Logistic regression in rare events data. Polit Anal. 9(2):137-163. https://doi.org/10.1093/oxfordjournals.pan. a004868
  • 21. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159-174
  • 22. Lara PEE, Fernandes CAR, Inza A, Mars JI, Metaxian JP, Dalla Mura M, Malfante M (2020) Automatic multichannel volcano-seismic classification using machine learning and EMD. IEEE J Sel Top Appl Earth Ob Remote Malfante M, Dalla Mura M, Mars JI, Metaxian J-P, Macedo O, Inza A (2018) Automatic classification of volcano seismic signatures. J Geophys Res: Solid Earth 123:10645-10658. https://doi.org/10. 1029/2018JB015470
  • 23. Manley F, Mather TA, Pyle DM, Clifton DA, Rodgers M, Thompson G, Londono JM (2022) A deep active learning approach to the automatic classification of volcano-seismic events. Front Earth Sci 10:807926
  • 24. Montalto P, Cannata A, Privitera E, Gresta S, Nunnari G, Patane D (2010) Towards an automatic monitoring system of infrasonic events at Mt. Etna: strategies for source location and modeling. Pure Appl Geophys 167:1215-1231. https://doi.org/10.1007/ s00024-010-0051-y
  • 25. Nunnari G (2021) Clustering activity at Mt Etna based on volcanic tremor: a case study. Earth Sci Inf 14:1121-1143. https://doi.org/ 10.1007/s12145-021-00606-5
  • 26. White J, Power SD (2023) (2023) k-fold Cross-validation can significantly over-estimate true classification accuracy in common EEG- based passive BCI experimental designs: an empirical investigation. Sensors 23(13):6077. https://doi.org/10.3390/s23136077
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de3ca053-46d9-42d4-8f88-2a040758ec15
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.