Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we define a new class of p-valent analytic functions with finitely many coefficients by making use of the generalized Ruscheweyh derivatives involving a general fractional derivative operator. Some properties of this class are also investigated. e.g. Coefficient estimates, convex combination, arithmatic mean, extreme points, radii of starlikeness and convexity. Many known results are as a special case of our results.
Czasopismo
Rocznik
Tom
Strony
75--86
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
- Central University of Rajasthan, Kishangarh, Ajmer, India
autor
- UDML College of Engineering, Jaipur, India
Bibliografia
- [1] Duren, P.L.: Univalent functions, Springer Verlag, New York Inc, 1983.
- [2] Goyal, S.P. and Goyal, R.: On a class of multivalent functions defined by generalized Ruscheweyh derivatives involving a general fractional derivative operator, J. Indian Acad. Math., 27(2) (2005), 439-456.
- [3] Miller, S.S. and Mocanu, P.T.: Differential subordination and univalent functions, Michigan Math J., 28 (1981), 157-171.
- [4] Najafzadeh, SH. and Kulkarni, S.R.: Application of Ruscheweyh derivative on univalent functions with negative and finitely many coefficients , J. Rajashthan Acad. Phy. Sci., 5(1) (2006), 39-51.
- [5] Najafzadeh, SH. and Kulkarni, S.R.: On application of Ruscheweyh derivatives to univalent functions I, J.Anal. Computation, (to appear) (2006).
- [6] Nunokawa, M.: A sufficient condition for univalence and starlikeness, Proc.Japan Acad. Ser. A Math. Sci., 65 (1989), 163-164.
- [7] Owa, S., Nunokawa, M. and Srivastava, H.M.: A certain class of multivalent functions, Appl. Math. Lett., 10(2) (1997), 7-10.
- [8] Shama, S. and Kulkarni, S.R.: A class of univalent function with negative and fixed finitely many coefficients , Acta Ciencia Indica , XXIXM(3) (2003), 587-594.
- [9] Shams, S., Kulkarni, S.R. and Jahangiri, Jay M.: On a class of univalent functions defined by Ruscheweyh derivatives, Kyungpook Math. J., 43(2003), 579-585.
- [10] Srivastava, H.M.: Distortion inequalities for analytic and univalent functions associated with certain fractional calculus and other linear operators (In Analytic and Geometric Inequalities and Applications eds. T.M. Rassias and H.M. Srivastava), Kluwar Academic Publishers, 478 (1999), 349-374.
- [11] Srivastava, H.M. and Saxena, R.K.: Operators of fractional integration and their applications, Applied Mathematics and Computation, 118 (2001), 1-52.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de2d372a-17d0-4cb7-9fa7-102231173104