PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Predicting the overall equipment efficiency of core drill rigs in mining using ANN and improving it using MCDM

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this manuscript, an attempt has been made to predict and improve the overall equipment effectiveness of core drill rigs. A combined Box– Jenkins and artificial neural network model was used to develop a three parameter model (drill pushing pressure, drill penetration rate & average pillar drill pit cycle time) for predicting effectiveness. the overall equipment efficiency of core drill rigs. The values of mean average percentage error, root mean square error, normalized root mean square error, men bias error, normalized mean biased error and coefficient of determination values were found to be 9.462%, 17.378%, 0.194, 0.96%, 0.0014 and 0.923. Empirical relationships were developed between the input and output parameters and its effectiveness were evaluated using analysis of variance. For attaining 74.9% effectiveness, the optimized values of pushing pressure, penetration rate and average pillar drill pit cycle time were predicted to be 101.7 bar, 0.94 m/min and 272 min, which was validated. Interactions, perturbations and sensitivity analysis were conducted.
Rocznik
Strony
art. no. 169581
Opis fizyczny
Bibliogr. 111 poz., rys., tab., wykr.
Twórcy
  • AVS College of Technology, Department of Mechanical Engineering, Chinnagoundapuram, Salem, Tamil Nadu, India
  • Department of Mechanical Engineering, Knowledge Institute of Technology, NH544, Kakapalayam, Salem, India
  • Department of Electrical Engineering, Annaporana Engineering College, Salem, India
Bibliografia
  • 1. Abedi M, Norouzi GH, Bahroudi, A. Support vector machine for multi-classification of mineral prospectivity areas. Computers & Geosciences 2012; 46(1): 272-283, http://dx.doi.org/10.1016/j.cageo.2011.12.014
  • 2. Alipour A, Mokhtarian M. RSM-based model to estimate the V-Cut drill and blast pattern specific charge in rock tunneling. International Journal of Geomechanics 2021; 21(11): 06021030, http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0002180
  • 3. Amini E, Nasiri M, Pargoo NS, Mozhgani Z, Golbaz D, Baniesmaeil M, Nezhad MM, Neshat M, Garcia DA, Sylaios G. Design optimization of ocean renewable energy converter using a combined Bi-level metaheuristic approach. Energy Conversion and Management: X. 2023 Jul 1;19:100371, https://doi.org/10.1016/j.ecmx.2023.100371
  • 4. Anvarovich IB, Yashnarovna IM. Predictive Models for Effective Management of E-commerce in New Uzbekistan. InInternet of Things, Smart Spaces, and Next Generation Networks and Systems: 22nd International Conference, NEW2AN 2022, Tashkent, Uzbekistan, December 15–16, 2022, Proceedings 2023 Apr 20 (pp. 636-648). Cham: Springer Nature Switzerland, https://doi.org/10.1007/978-3-031-30258-9_57
  • 5. Bandyopadhyay LK, Chaulya SK, Mishra PK.. Wireless communication in underground mines. RFID-Based Sens. Netw. 2010, 22., http://dx.doi.org/10.1007/978-0-387-98165-9
  • 6. Basarir H, Tutluoglu L, Karpuz C. Penetration rate prediction for diamond bit drilling by adaptive neuro-fuzzy inference system and multiple regressions. Engineering Geology 2014; 173(1): 1-9, https://doi.org/10.1016/j.enggeo.2014.02.006
  • 7. Beaton T, Cyre J, Isnor S, Herman JJ. New technologies eliminate drill bit wear in oil sands applications. In SPE Unconventional Resources Conference Canada 2013; OnePetro, http://dx.doi.org/10.2118/167133-MS
  • 8. Bevilacqua M, Ciarapica FE, De Sanctis I, Mazzuto G, Paciarotti C. A Changeover Time Reduction through an integration of lean practices: a case study from pharmaceutical sector. Assembly Automation 2015; 35(1): 22-34, http://dx.doi.org/10.1108/AA-05-2014-035
  • 9. Bevilacqua A, Speranza B, Petruzzi L, Sinigaglia M, Corbo MR. Using regression and Multifactorial Analysis of Variance to assess the effect of ascorbic, citric, and malic acids on spores and activated spores of Alicyclobacillus acidoterrestris. Food Microbiology. 2023 Apr 1;110:104158, https://doi.org/10.1016/j.fm.2022.104158
  • 10. Castellon DF, Fenerci A, Øiseth O. A comparative study of wind-induced dynamic response models of long-span bridges using artificial neural networks, support vector regression and buffeting theory. Journal of Wind Engineering and Industrial Aerodynamics 2021; 209(1): 104484, https://doi.org/10.1016/j.jweia.2020.104484
  • 11. Chaabene M, Ammar MB. Neuro-fuzzy dynamic model with Kalman filter to forecast irradiance and temperature for solar energy systems. Renewable Energy 2008; 33(7): 1435-1443, http://dx.doi.org/10.1016/j.renene.2007.10.004
  • 12. Castellano-Méndez M, González-Manteiga W, Febrero-Bande M, Prada-Sánchez JM, Lozano-Calderón R. Modelling of the monthly and daily behaviour of the runoff of the Xallas river using Box–Jenkins and neural networks methods. Journal of hydrology 2004; 296(1-4): 38-58, https://doi.org/10.1016/j.jhydrol.2004.03.011
  • 13. Cao X, Kozhevnykov A, Dreus A, Liu BC. Diamond core drilling process using intermittent flushing mode. Arabian Journal of Geosciences. 2019 Feb;12:1-7, https://doi.org/10.1007/s12517-019-4287-2
  • 14. Choubin B, Malekian A. Combined gamma and M-test-based ANN and ARIMA models for groundwater fluctuation forecasting in semiarid regions. Environmental Earth Sciences 2017; 76(1): 1-10,, https://doi.org/10.1007/s12665-017-6870-8
  • 15. Cui H, Qiu J, Cao J, Guo M, Chen X, Gorbachev S. Route optimization in township logistics distribution considering customer satisfaction based on adaptive genetic algorithm. Mathematics and Computers in Simulation. 2023 Feb 1;204:28-42, http://dx.doi.org/10.1016/j.matcom.2022.05.020
  • 16. De Giorgi MG, Campilongo S, Ficarella A, Congedo PM. Comparison between wind power prediction models based on wavelet decomposition with least-squares support vector machine (LS-SVM) and artificial neural network (ANN). Energies 2014; 7(8): 5251-5272, https://doi.org/10.3390/en7085251
  • 17. Deng F, Shen S, He J, Yue W, Qian K, Miao X, Xu P, Wang M. The novel characteristics for training Ridge Polynomial neural network based on Lagrange multiplier. Alexandria Engineering Journal. 2023 Mar 15;67:93-103, https://doi.org/10.1016/j.aej.2022.07.017
  • 18. de Oliveira WB, Lisboa TP, da Silva GC, Oliveira RS, de Souza CC, Matos MA, de Oliveira MA, Matos RC. Box-Behnken Factorial Design Applied to Electrodeposition of Silver Nanoparticles in 3D-Printed Disposable Device for the Determination of Sulfamethoxazole in Different Samples by Differential Pulse Voltammetry. Available at SSRN 4436897, https://dx.doi.org/10.2139/ssrn.4436897
  • 19. Ding K, Chen X, Weng S, Liu Y, Zhang J, Li Y, Yang Z. Health status evaluation of photovoltaic array based on deep belief network and Hausdorff distance. Energy. 2023 Jan 1;262:125539, https://doi.org/10.1016/j.energy.2022.125539
  • 20. Dobra P, Jósvai J. Assembly line overall equipment effectiveness (OEE) prediction from human estimation to supervised machine learning. Journal of Manufacturing and Materials Processing 2022; 6(3): 59, https://doi.org/10.3390/jmmp6030059
  • 21. Dodevska Z, Petrović A, Radovanović S, Delibašić B. Changing criteria weights to achieve fair VIKOR ranking: a postprocessing reranking approach. Autonomous Agents and Multi-Agent Systems. 2023 Jun;37(1):9, https://doi.org/10.1007/s10458-022-09591-5
  • 22. Fajun Z, Qigen D, Fuchang H, Weiqin Z. A new method of coring in coal mine: pressure-holding and continuous coring technology. Bulletin of Engineering Geology and the Environment. 2023 Jan;82(1):17, https://doi.org/10.1007/s10064-022-03038-7
  • 23. Faradonbeh RS, Monjezi M. Prediction and minimization of blast-induced ground vibration using two robust meta-heuristic algorithms. Engineering with Computers 2017; 33(1): 835-851, https://doi.org/10.1007/s00366-017-0501-6
  • 24. Fekri Sari M, Avakh Darestani S. Fuzzy overall equipment effectiveness and line performance measurement using artificial neural network. Journal of quality in maintenance engineering 2019; 25(2): 340-354, https://doi.org/10.1108/JQME-12-2017-0085
  • 25. Feldman R, Sanger J. The text mining handbook: advanced approaches in analyzing unstructured data. Cambridge university press 2007, https://doi.org/10.1017/CBO9780511546914
  • 26. Fernandez-de-Cossio-Diaz J, Cocco S, Monasson R. Disentangling representations in restricted boltzmann machines without adversaries. Physical Review X. 2023 Apr 5;13(2):021003, https://doi.org/10.1103/PhysRevX.13.021003
  • 27. Figiel A, Klačková I. Safety requirements for mining systems controlled in automatic mode. Acta Montanistica Slovaca 2020; 25(3), https://doi.org/10.46544/AMS.v25i3.13
  • 28. Flores JHF, Engel PM, Pinto RC. Autocorrelation and partial autocorrelation functions to improve neural networks models on univariate time series forecasting. In The 2012 International Joint Conference on Neural Networks (IJCNN) 2012; 1-8, http://dx.doi.org/10.1109/IJCNN.2012.6252470
  • 29. Follett L, Vander Naald B. Heterogeneity in choice experiment data: A Bayesian investigation. Journal of Choice Modelling. 2023 Jan 4:100398, https://doi.org/10.1016/j.jocm.2022.100398
  • 30. Fonseca, D.J., Navaresse, D.O. and Moynihan, G.P., 2003. Simulation metamodeling through artificial neural networks. Engineering applications of artificial intelligence, 16(3), pp.177-183. https://doi.org/10.1016/S0952-1976(03)00043-5
  • 31. Gairaa K, Khellaf A, Messlem Y, Chellali F. Estimation of the daily global solar radiation based on Box–Jenkins and ANN models: A combined approach. Renewable and Sustainable Energy Reviews 2016; 57: 238-249, http://dx.doi.org/10.1016/j.rser.2015.12.111
  • 32. Gharbia IB, Ferzly J, Vohralík M, Yousef S. Adaptive inexact smoothing Newton method for a nonconforming discretization of a variational inequality. Computers & Mathematics with Applications. 2023 Mar 1;133:12-29, https://doi.org/10.1016/j.camwa.2022.11.031
  • 33. Geier N, Davim JP, Szalay T. Advanced cutting tools and technologies for drilling carbon fibre reinforced polymer (CFRP) composites: A review. Composites Part A: Applied Science and Manufacturing 2019; 125: 105552, https://doi.org/10.1016/j.compositesa.2019.105552
  • 34. Guermoui M, Melgani F, Gairaa K, Mekhalfi ML. A comprehensive review of hybrid models for solar radiation forecasting. Journal of Cleaner Production 2020; 258: 120357, http://dx.doi.org/10.1016/j.jclepro.2020.120357
  • 35. Gouveia L, Paias A, Ponte M. The travelling salesman problem with positional consistency constraints: An Application to healthcare services. European Journal of Operational Research. 2023 Aug 1;308(3):960-89, https://doi.org/10.1016/j.ejor.2022.11.050
  • 36. Hajihassani, M., Jahed Armaghani, D., Monjezi, M., Mohamad, E.T. and Marto, A., 2015. Blast-induced air and ground vibration prediction: a particle swarm optimization-based artificial neural network approach. Environmental Earth Sciences, 74, pp.2799-2817. https://doi.org/10.1007/s12665-015-4274-1
  • 37. Hassan MA, Bailek N, Bouchouicha K, Nwokolo SC. Ultra-short-term exogenous forecasting of photovoltaic power production using genetically optimized non-linear auto-regressive recurrent neural networks. Renewable Energy 2021; 171: 191-209, https://doi.org/10.1016/j.renene.2021.02.103
  • 38. Hassani H, Yeganegi MR. Selecting optimal lag order in Ljung–Box test. Physica A: Statistical Mechanics and its Applications 2020; 541:123700, https://doi.org/10.1016/j.physa.2019.123700
  • 39. Hong D, Li G, Wei L, Li D, Li P, Yi Z. A self-scaling sequential quasi-Newton method for estimating the heat transfer coefficient distribution in the air jet impingement. International Journal of Thermal Sciences. 2023 Mar 1;185:108059, https://doi.org/10.1016/j.ijthermalsci.2022.108059
  • 40. Hong S, Hu X. Optimization of impeller of deep-sea mining pump for erosive wear reduction based on response surface methodology. Marine Georesources & Geotechnology 2022; 1-17, https://doi.org/10.3390/jmse10081063
  • 41. Hyder Z, Siau K, Nah F. Artificial intelligence, machine learning, and autonomous technologies in mining industry. Journal of Database Management (JDM) 2019; 30(2): pp.67-79, https://doi.org/10.4018/JDM.2019040104
  • 42. Ikemoto K, Takahashi K, Ozawa T, Isobe H. Akaike's Information Criterion for Stoichiometry Inference of Supramolecular Complexes. Angewandte Chemie International Edition. 2023 Mar 27;62(14):e202219059, https://doi.org/10.1002/anie.202219059
  • 43. Jiang X, Yang H, Yin J, Liao W. A three-term conjugate gradient algorithm with restart procedure to solve image restoration problems. Journal of Computational and Applied Mathematics. 2023 May 1;424:115020, https://doi.org/10.1016/j.cam.2022.115020
  • 44. Joe-Asare T, Stemn E, Amegbey N. Causal and contributing factors of accidents in the Ghanaian mining industry. Safety Science. 2023 Mar 1;159:106036, https://doi.org/10.1016/j.ssci.2022.106036
  • 45. Jung W, Taflanidis AA. Efficient global sensitivity analysis for high-dimensional outputs combining data-driven probability models and dimensionality reduction. Reliability Engineering & System Safety. 2023 Mar 1;231:108805, https://doi.org/10.1016/j.ress.2022.108805
  • 46. Jurado-Molina J, Hernández-López CH, Hernández C. Evaluation of fish density influence on the growth of the spotted rose snapper reared in floating net cages using growth models and non-parametric tests. Ciencias Marinas. 2023 Jan 11, https://doi.org/10.7773/cm.y2023.3253
  • 47. Karsoliya S. Approximating number of hidden layer neurons in multiple hidden layer BPNN architecture. International Journal of Engineering Trends and Technology 2012; 3(6): 714-717, http://www.ijettjournal.org/volume-3/issue-6/IJETT-V3I6P206.pdf
  • 48. Kechaou F, Addouche SA, Zolghadri M. A comparative study of overall equipment effectiveness measurement systems. Production Planning & Control 2022; 1-20, https://doi.org/10.1080/09537287.2022.2037166
  • 49. Khanna P, Sahu M. Performance Analysis of Breast Cancer Data Using Mann–Whitney U Test and Machine Learning. InAdvances in Signal Processing, Embedded Systems and IoT: Proceedings of Seventh ICMEET-2022 2023 May 24 (pp. 277-286). Singapore: Springer Nature Singapore, https://doi.org/10.1007/978-981-19-8865-3_26
  • 50. Khanduzi R, Sangaiah AK. An efficient recurrent neural network for defensive Stackelberg game. Journal of Computational Science. 2023 Mar 1;67:101970, http://dx.doi.org/10.1016/j.jocs.2023.101970
  • 51. Klyatis LM. Implementation Successful Prediction of Product Efficiency, Accelerated: Reliability and Durability Testing, and Accurate Simulation. InPrediction Technologies for Improving Engineering Product Efficiency 2023 Jan 4 (pp. 193-261). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-16655-6_6
  • 52. Li Z, Wang J, Huang J, Ding M. Development and research of triangle-filter convolution neural network for fuel reloading optimization of block-type HTGRs. Applied Soft Computing. 2023 Mar 1;136:110126, https://doi.org/10.1016/j.asoc.2023.110126
  • 53. Liang H, Zou J, Zuo K, Khan MJ. An improved genetic algorithm optimization fuzzy controller applied to the wellhead back pressure control system. Mechanical Systems and Signal Processing 2020, 142: 106708, http://dx.doi.org/10.1016/j.ymssp.2020.106708
  • 54. Lindegren ML, Lunau MR, Mafia MMP, da Silva ER. Combining simulation and data analytics for oee improvement. International Journal of Simulation Modelling (IJSIMM) 2022; 21(1), https://doi.org/10.2507/IJSIMM21-1-584
  • 55. Li H, Knapik S, Li Y, Park C, Guo J, Mojumder S, Lu Y, Chen W, Apley DW, Liu WK. Convolution Hierarchical Deep-Learning Neural Network Tensor Decomposition (C-HiDeNN-TD) for high-resolution topology optimization. Computational Mechanics. 2023 May 3:1-20, https://doi.org/10.1007/s00466-023-02333-8
  • 56. Liu, B., Yu, X., Chen, J. and Wang, Q., 2021. Air pollution concentration forecasting based on wavelet transform and combined weighting forecasting model. Atmospheric Pollution Research, 12(8), p.101144, https://doi.org/10.1016/j.apr.2021.101144
  • 57. Lourakis MI. A brief description of the Levenberg-Marquardt algorithm implemented by levmar. Foundation of Research and Technology 2005; 4(1): 1-6.
  • 58. Luo J, Wan L, Zhang Q, Cui B, Li C, Jiang Y, Jiang M, Wang K. Constructing a drug release model by central composite design to investigate the interaction between drugs and temperature-sensitive controlled release nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics. 2023 Feb 1;183:24-32, https://doi.org/10.1016/j.ejpb.2022.12.009
  • 59. Luconi E, Boracchi P, Nodari R, Comandatore F, Marano G, Vaglienti F, Galli M, Biganzoli E. Spatial and Temporal Analyses of the Event of Death for 1480 in Milan Using the Data Contained in the Sforza’s Registers of the Dead. International Journal of Environmental Research and Public Health. 2023 Feb 4;20(4):2783, https://doi.org/10.3390/ijerph20042783.
  • 60. Ma L, Meng Z, Teng Z, Tang Q. A measurement error prediction framework for smart meters under extreme natural environment stresses. Electric Power Systems Research. 2023 May 1;218:109192, https://doi.org/10.1016/j.epsr.2023.109192
  • 61. Makoni T, Mazuruse G, Nyagadza B. International tourist arrivals modelling and forecasting: A case of Zimbabwe. Sustainable Technology and Entrepreneurship. 2023 Jan 1;2(1):100027, https://doi.org/10.1016/j.stae.2022.100027
  • 62. Martins GS, Giesbrecht M. Clearness index forecasting: A comparative study between a stochastic realization method and a machine learning algorithm. Renewable Energy 2021; 180: 787-805, https://doi.org/10.1016/j.renene.2021.08.094
  • 63. Marey S, Aboukarima A, Almajhadi Y. Predicting the performance parameters of chisel plow using neural network model. Engenharia Agrícola 2020, 40: 719-731, https://doi.org/10.1590/1809-4430-Eng.Agric.v40n6p719-731/2020
  • 64. McKenzie E. Some ARMA models for dependent sequences of Poisson counts. Advances in Applied Probability 1988, 20(4): 822-835, https://doi.org/10.2307/1427362
  • 65. Mishra DP, Sugla M, Singha P. Productivity improvement in underground coal mines-a case study. Journal of Sustainable Mining 2013; 12(3): 48-53, https://doi.org/10.46873/2300-3960.1300
  • 66. Morrison WM, Tang R. China's rare earth industry and export regime: economic and trade implications for the United States 2012, https://sgp.fas.org/crs/row/R42510.pdf
  • 67. Montgomery DC. Design and analysis of experiments. John wiley & sons 2017, ISBN: 978-1-119-49244-3
  • 68. Heckman JJ, Lochner LJ, Todd PE. Earnings functions, rates of return and treatment effects: The Mincer equation and beyond. Handbook of the Economics of Education 2006; 1: 307-458, https://doi.org/10.1016/S1574-0692(06)01007-5
  • 69. Hossain ME, Islam MR. Drilling Engineering Problems and Solutions: A Field Guide for Engineers and Students. John Wiley & Sons 2018, ISBN: 978-1-118-99864-9. https://doi.org/10.1002/9781118998632
  • 70. Nariyan E, Sillanpää M, Wolkersdorfer C. Uranium removal from Pyhäsalmi/Finland mine water by batch electrocoagulation and optimization with the response surface methodology. Separation and Purification Technology 2018; 193: pp.386-397, https://doi.org/10.1016/j.seppur.2017.10.020
  • 71. Palanikumar, K. Experimental investigation and optimisation in drilling of GFRP composites. Measurement 2011; 44(10): 2138-2148, https://doi.org/10.1016/j.measurement.2011.07.023
  • 72. Paventhan R, Lakshminarayanan PR, Balasubramanian V. Fatigue behaviour of friction welded medium carbon steel and austenitic stainless steel dissimilar joints. Materials & Design 2011, 32(4): 1888-1894, https://doi.org/10.1016/j.matdes.2010.12.011
  • 73. Patra AK, Gautam S, Majumdar S, Kumar P. Prediction of particulate matter concentration profile in an opencast copper mine in India using an artificial neural network model. Air Quality, Atmosphere & Health 2016; 9: 697-711. https://doi.org/10.1007/s11869-015-0369-9
  • 74. Pan Y, Chen L, Wang J, Ma H, Cai S, Pu S, Duan J, Gao L, Li E. Research on deformation prediction of tunnel surrounding rock using the model combining firefly algorithm and nonlinear auto-regressive dynamic neural network. Engineering with Computers 2021;’37: 1443-1453, https://link.springer.com/article/10.1007/s00366-019-00894-y.
  • 75. Prasad BS, Murthy VMSR, Naik SR. Challenges in Drill Equipment Selection vis-à-vis Underground Excavations–A Methodology. In Proceedings of Geotechnical Challenges in Mining, Tunneling and Underground Infrastructure 2022, 167-182, 10.1007/978-981-16-9770-8_9.
  • 76. Raffaldi MJ, Seymour JB, Richardson J, Zahl E, Board M. Cemented paste backfill geomechanics at a narrow-vein underhand cut-and-fill mine. Rock mechanics and rock engineering 2019; 52: 4925-4940, https://link.springer.com/article/10.1007/s00603-019-01850-4.
  • 77. Raich A, Wu X, Cinar A. A comparative study of neural networks and nonlinear time series modeling techniques. In Dynamics and Control of Chemical Reactors, Distillation Columns, and Batch Processes (DYCORD+'92): Selected Papers from the 3rd IFAC Symposium, Maryland, USA, 26-29 April 1992, 3: 63.
  • 78. Ratnayake RC. Challenges in inspection planning for maintenance of static mechanical equipment on ageing oil and gas production plants: The state of the art. In International Conference on Offshore Mechanics and Arctic Engineering 2012; 44939: 91-103, http://dx.doi.org/10.1115/OMAE2012-83248
  • 79. Robatto Simard S, Gamache M, Doyon-Poulin P. Current Practices for Preventive Maintenance and Expectations for Predictive Maintenance in East-Canadian Mines. Mining. 2023 Mar;3(1):26-53, http://dx.doi.org/10.3390/mining3010002
  • 80. Robèrt, K.H., Schmidt-Bleek, B., De Larderel, J.A., Basile, G., Jansen, J.L., Kuehr, R., Thomas, P.P., Suzuki, M., Hawken, P. and Wackernagel, M.,. Strategic sustainable development—selection, design and synergies of applied tools. Journal of Cleaner production 2002, 10(3), pp.197-214, https://doi.org/10.1016/j.jclepro.2016.04.059
  • 81. Sakib N, Wuest T. Challenges and opportunities of condition-based predictive maintenance: a review. Procedia Cirp 2018; 78: 267-272, https://doi.org/10.1016/j.procir.2018.08.318
  • 82. Samatemba B, Zhang L, Besa B. Evaluating and optimizing the effectiveness of mining equipment; the case of Chibuluma South underground mine. Journal of Cleaner Production 2020; 252: 119697, https://doi.org/10.1016/j.jclepro.2019.119697
  • 83. Sameer HA, Gharghan SK, Mutlag AH. Hybridization of particle swarm optimization algorithm with neural network for COVID‐19 using computerized tomography scan and clinical parameters. The Journal of Engineering. 2023 Jan;2023(2):e12226, https://doi.org/10.1049/tje2.12226
  • 84. Sarah Sarwar S. Comparison between the previous and current method of copex distribution and optimization of Robi Axiata Limited 2013, Brac University, Ayesha Abed Library.
  • 85. Sharma P, Said Z, Memon S, Elavarasan RM, Khalid M, Nguyen XP, Arc M, Hoang AT, Nguyen LH. Comparative evaluation of AI‐based intelligent GEP and ANFIS models in prediction of thermophysical properties of Fe3O4‐coated MWCNT hybrid nanofluids for potential application in energy systems. International Journal of Energy Research 2022; 46(13): 19242-19257, https://doi.org/10.1002/er.8010
  • 86. Shamshirband S, Mohammadi K, Yee L, Petković D, Mostafaeipour A. A comparative evaluation for identifying the suitability of extreme learning machine to predict horizontal global solar radiation. Renewable and sustainable energy reviews 2015; 52: 1031-1042, http://dx.doi.org/10.1016/j.rser.2015.07.173
  • 87. Sheykhi H, Bagherpour R, Ghasemi E, Kalhori H. Forecasting ground vibration due to rock blasting: a hybrid intelligent approach using support vector regression and fuzzy C-means clustering. Engineering with Computers 2018; 34: 357-365, https://doi.org/10.1007/s00366-017-0546-6
  • 88. Sick B. Online tool wear monitoring in turning using time-delay neural networks. In Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP'98 (Cat. No. 98CH36181), 1: 445-448, https://doi.org/10.1007/BF01428126
  • 89. Soltani ER, Panahi HA, Moniri E, Fard NT, Raeisi I, Beik J, Siavoshani AY. Construction of a pH/Temperature dual-responsive drug delivery platform based on exfoliated MoS2 nanosheets for effective delivery of doxorubicin: Parametric optimization via central composite design. Materials Chemistry and Physics. 2023 Feb 1;295:127159, https://doi.org/10.1016/j.matchemphys.2022.127159
  • 90. Sun P, Zhou S, Cao H, Cai G, Zhang S, Gao Q, Cheng G, Liu B, Liu G, Zhang X, Liu Y. Design and Implementation of a Chain-Type Direct Push Drilling Rig for Contaminated Sites. International Journal of Environmental Research and Public Health. 2023 Feb 20;20(4):3757, https://doi.org/10.3390/ijerph20043757
  • 91. Sun Y, Liu Y, Qin X, Dou Z, Feng Z, Yang G. Investigating Drillstring Vibration and Stability in Coring Drilling. Energies 2022; 15(14): 5234, https://doi.org/10.3390/en15145234
  • 92. Talalay PG. Perspectives for development of ice-core drilling technology: a discussion. Annals of Glaciology. 2014;55(68):339-50, https://doi.org/10.3189/2014AoG68A007
  • 93. Talalay PG. Rigs and Drills for Geotechnical and Exploration Rotary Drilling in the Polar Regions. InGeotechnical and Exploration Drilling in the Polar Regions 2023 Jan 2 (pp. 259-294). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-07269-7_9
  • 94. Tao W, Jiang F, Li L, Zhang D, Guo X, Liao WH. Dynamical analysis and vibration estimation of a flexible plate with enhanced active constrained layer damping treatment by combinatorial neural networks of surrogates. Aerospace Science and Technology. 2023 Jan 17:108136, https://doi.org/10.1016/j.ast.2023.108136.
  • 95. Tian J, Li J, Cheng W, Zhu Z, Yang L, Yang Y, Zhang T. Working mechanism and rock-breaking characteristics of coring drill bit. Journal of Petroleum Science and Engineering. 2018 Mar 1;162:348-57, https://doi.org/10.1016/j.petrol.2017.12.047.
  • 96. Tiwari, P., 2023. Effect of innovation practices of banks on customer loyalty: an SEM-ANN approach. Benchmarking: An International Journal, (ahead-of-print), https://doi.org/10.1108/BIJ-06-2022-0392
  • 97. Toper AZ, Kabongo KK, Stewart RD, Daehnke A. The mechanism, optimization and effects of preconditioning. Journal of the Southern African Institute of Mining and Metallurgy 2000, 100(1): 7-15.
  • 98. Verano DA, Husnawati H, Ermatita E. Implementation of autoregressive integrated moving average model to forecast raw material stock in the digital printing industry. Journal of Information Technology and Computer Science 2020, 5(1): 13-22, http://dx.doi.org/10.25126/jitecs.202051117
  • 99. Wang H, Tenorio V, Li G, Hou J, Hu N. Optimization of trackless equipment scheduling in underground mines using genetic algorithms. Mining, Metallurgy & Exploration. 2020; 37:1531-44, http://dx.doi.org/10.1007/s42461-020-00285-8
  • 100. Weremfo A, Abassah‐Oppong S, Adulley F, Dabie K, Seidu‐Larry S. Response surface methodology as a tool to optimize the extraction of bioactive compounds from plant sources. Journal of the Science of Food and Agriculture. 2023 Jan 15;103(1):26-36, https://doi.org/10.1002/jsfa.12121
  • 101. Woodroffe NJ, Ariaratnam ST. Cost and risk evaluation for horizontal directional drilling versus open cut in an urban environment. Practice periodical on structural design and construction 2008; 13(2): 85-92. https://doi.org/10.1061/(ASCE)1084-0680(2008)13:2(85)
  • 102. Woodward DG. Life cycle costing—Theory, information acquisition and application. International journal of project management 1997; 15(6): 335-344, https://doi.org/10.1016/S0263-7863(96)00089-0
  • 103. Wu CL, Chau KW. Prediction of rainfall time series using modular soft computingmethods. Engineering applications of artificial intelligence 2013’ 26(3): 997-1007, https://doi.org/10.1016/j.engappai.2012.05.023
  • 104. Wu Y, Liu L, Qian S. A small sample bearing fault diagnosis method based on variational mode decomposition, autocorrelation function, and convolutional neural network. The International Journal of Advanced Manufacturing Technology. 2023 Feb;124(11-12):3887-98, https://doi.org/10.1007/s00170-021-08126-8
  • 105. Xie Y, Wang S, Zhang G, Fan Y, Fernandez C, Blaabjerg F. Optimized multi-hidden layer long short-term memory modeling and suboptimal fading extended Kalman filtering strategies for the synthetic state of charge estimation of lithium-ion batteries. Applied Energy. 2023 Apr 15;336:120866, https://doi.org/10.1016/j.apenergy.2023.120866
  • 106. Ye Y, Huang Q, Rong Y, Yu X, Liang W, Chen Y, Xiong S. Field detection of small pests through stochastic gradient descent with genetic algorithm. Computers and Electronics in Agriculture. 2023 Mar 1;206:107694, https://doi.org/10.1016/j.compag.2023.107694
  • 107. Yin M, He S, Soomro TA, Yuan H. Efficient skeleton-based action recognition via multi-stream depthwise separable convolutional neural network. Expert Systems with Applications. 2023 Sep 15;226:120080, http://dx.doi.org/10.1016/j.eswa.2023.120080
  • 108. Zaki MJ. SPADE: An efficient algorithm for mining frequent sequences. Machine learning 2001; 42: 31-60, https://doi.org/10.1023/A:1007652502315
  • 109. Zhang JL, Liu X, Ren TY, Yuan Y, Mang HA. Structural behavior of reinforced concrete segments of tunnel linings strengthened by a steel-concrete composite. Composites Part B: Engineering 2019; 178: 107444, http://dx.doi.org/10.1016/j.compositesb.2019.107444
  • 110. Zhao R, Shi S, Li S, Guo W, Zhang T, Li X, Lu J. Deep Learning for Intelligent Prediction of Rock Strength by Adopting Measurement While Drilling Data. International Journal of Geomechanics. 2023 Apr 1;23(4):04023028, https://doi.org/10.1061/IJGNAI.GMENG-8080
  • 111. Zuo HY, Luo ZQ, Guan JL, Wang YW. Identification on rock and soil parameters for vibration drilling rock in metal mine based on fuzzy least square support vector machine. Journal of Central South University 2014; 21(3): 1085-1090, http://dx.doi.org/10.1007/s11771-014-2040-2
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de26b5af-96ac-4097-bea6-9118d17aab6f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.