PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A novelty detection approach to monitoring of epicyclic gearbox health

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Reliable monitoring for detection of damage in epicyclic gearboxes is a serious concern for all industries in which these gearboxes operate in a harsh environment and in variable operational conditions. In this paper, autonomous multidimensional novelty detection algorithms are used to estimate the gearbox’ health state based on vectors of features calculated from the vibration signal. The authors examine various feature vectors, various sources of data and many different damage scenarios in order to compare novel detection algorithms based on three different principles of operation: a distance in the feature space, a probability distribution, and an ANN (artificial neural network)-based model reconstruction approach. In order to compensate for non-deterministic results of training of neural networks, which may lead to different network performance, the ensemble technique is used to combine responses from several networks. The methods are tested in a series of practical experiments involving implanting a damage in industrial epicyclic gearboxes, and acquisition of data at variable speed conditions.
Rocznik
Strony
459--473
Opis fizyczny
Bibliogr. 32 poz., fot., rys., tab., wykr.
Twórcy
  • AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059, Cracow, Poland
  • AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059, Cracow, Poland
  • AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059, Cracow, Poland
Bibliografia
  • [1] Samuel, P.D., Pines, D.J. (2005). A review of vibration-based techniques for helicopter transmission diagnostics. J. Sound Vib., 282(1-2), 475-508.
  • [2] Kandukuri, S.T., Klausen, A., Karimi, H.R., Robbersmyr, K.G., (2016). A review of diagnostics and prognostics of low-speed machinery towards wind turbine farm-level health management. Renew. Sustain. Energy Rev., 53, 697-708.
  • [3] Jardine, A.K.S., Lin, D., Banjevic, D. (2006). A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process., 20, 1483-1510.
  • [4] Zimroz, R., Urbanek, J., Barszcz, T., Bartelmus, W., Millios, F., Martin, N. (2011). Measurement of instantaneous shaft speed by advanced vibration signal processing - Application to wind turbine gearbox. Metrol. Meas. Syst., 18(4), 701-712.
  • [5] Urbanek, J., Barszcz, T., Sawalhi, N., Randall, R.B. (2011). Comparison of amplitude-based and phase-based methods for speed tracking in application to wind turbines. Metrol. Meas. Syst., 8(2), 295-304.
  • [6] Worden, K., Staszewski, W.J., Hensman, J.J. (2011). Natural computing for mechanical systems research: A tutorial overview. Mech. Syst. Signal Process., 25(1), 4-111.
  • [7] Pimentel, M.A.F., Clifton, D.A., Clifton, L., Tarassenko, L. (2014). A review of novelty detection. Signal Processing, (99), 215-249.
  • [8] Omenzetter, P., Brownjohn, J.M.W., Moyo, P. (2004). Identification of unusual events in multi-channel bridge monitoring data. Mech. Syst. Signal Process., 18(2), 409-430.
  • [9] Mustapha, F., Manson, G., Worden, K., Pierce, S.G. (2007). Damage location in an isotropic plate using a vector of novelty indices. Mech. Syst. Signal Process., 21(4), 1885-1906.
  • [10] Papatheou, E., Manson, G., Barthorpe, R.J., Worden, K. (2014). The use of pseudo-faults for damage location in SHM: An experimental investigation on a Piper Tomahawk aircraft wing. J. Sound Vib., 333( 3), 971-990.
  • [11] Haggett, S.J., Chu, D.F. (2009). Evolving novelty detectors for specific applications. Neurocomputing, 72, 2392-2405.
  • [12] Rizzo, P., Sorrivi, E., Lanza di Scalea, F., Viola, E. (2007). Wavelet-based outlier analysis for guided wave structural monitoring: Application to multi-wire strands. J. Sound Vib., 307(1-2), 52-68.
  • [13] Worden, K., Sohn, H., Farrar, C.R. (2002). Novelty Detection in a Changing Environment: Regression and Interpolation Approaches,. J. Sound Vib., 258(4), 741-761.
  • [14] Worden, K., Manson, G., Fieller, N.R.J. (2000). Damage Detection Using Outlier Analysis. J. Sound Vib., 229(3), 647-667.
  • [15] Klein, R. (2013). A Method for Anomaly Detection for Non-stationary Vibration Signatures. Annu. Conf. Progn. Heal. Manag. Soc., 1-7.
  • [16] Tao, X., Lu, C., Wang, Z. (2013). An approach to performance assessment and fault diagnosis for rotating machinery equipment. EURASIP J. Adv. Signal Process., 1, 1-8.
  • [17] Georgoulas, G., Loutas, T., Stylios, C.D., Kostopoulos, V. (2013). Bearing fault detection based on hybrid ensemble detector and empirical mode decomposition. Mech. Syst. Signal Process., 41(1-2), 510-525.
  • [18] Bartkowiak, A., Zimroz, R. (2011). Outliers analysis and one class classification approach for planetary gearbox diagnosis. J. Phys. Conf. Ser., 305, 12031.
  • [19] Khawaja, T.S., Georgoulas, G., Vachtsevanos, G. (2008). An efficient Novelty Detector for online fault diagnosis based on Least Squares Support Vector Machines. 2008 Ieee Autotestcon, 1, 1-6.
  • [20] Pirra, M., Fasana, A., Garibaldi, L., Marchesiello, S. (2012). Damage identification and external effects removal for roller bearing diagnostics. European Conference of the Prognostics and Health Management Society, 1-8.
  • [21] Baydar, N., Chen, Q., Ball, A., Kruger, U. (2001). Detection of Incipient Tooth Defect in Helical Gears Using Multivariate Statistics. Mech. Syst. Signal Process., 15, 303-321.
  • [22] Yang, M., Makis, V. (2010). ARX model-based gearbox fault detection and localization under varying load conditions. J. Sound Vib., 329(24), 5209-5221.
  • [23] Komorska, I. (2012). Automobile gearbox diagnostics on the basis of the reference model. Mech. Control, 31(1), 6-15.
  • [24] Dervilis, N., Choi, M., Antoniadou, I., Farinholt, K.M., Taylor, S.G., Barthorpe, R.J., Park, G., Worden, K., Farrar, C.R. (2012). Novelty detection applied to vibration data from a CX-100 wind turbine blade under fatigue loading. J. Phys. Conf. Ser., 382, 12047.
  • [25] Nazarko, P., Ziemianski, L. (2016). Damage detection in aluminum and composite elements using neural networks for Lamb waves signal processing. Eng. Fail. Anal., 69, 97-107.
  • [26] Sheng, S. (2012). Wind Turbine Gearbox Condition Monitoring Round Robin Study Vibration Analysis. NREL/TP-5000-54530, Tech. Rep. July, NREL.
  • [27] Coral, R., Flesch, C., Penz, C., Roisenberg, M., Pacheco, A. (2016). A monte carlo-based method for assessing the measurement uncertainty in the training and use of artificial neural networks. Metrol. Meas. Syst., 23( 2), 281-294.
  • [28] Dudzik, S. (2013). Characterization of material defects using active thermography and an artificial neural network. Metrol. Meas. Syst., 20(3), 491-500.
  • [29] Wu, B., Saxena, A., Khawaja, T.S., Patrick, R., Vachtsevanos, G., Sparis, P. (2004). An Approach To Fault Diagnosis of Helicopter Planetary Gears. IEEE Autotestcon, 475-481.
  • [30] Li, R., He, D., Bechhoefer, E. (2009). Investigation on Fault Detection for Split Torque Gearbox Using Acoustic Emission and Vibration Signals. Annual Conference of the Prognostics and Health Management Society , 1-11.
  • [31] El-Morsy, M.S., Abouel-Seoud, S.A., Rabeih, E. (2010). Geared System Condition Diagnostics Via Torsional Vibration Measurement. Proceedings of ISMA2010, 2831-2842.
  • [32] Sharma, V., Parey, A. (2016). A Review of Gear Fault Diagnosis Using Various Condition Indicators. Procedia Eng., 144, 253-263.
Uwagi
EN
1. The work presented in this paper was supported by the National Centre for Research and Development in Poland under the research project no. PBS3/B6/21/2015.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de261f70-e327-43a7-84ba-807f7822f1a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.