PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of approaches to reliability verification of existing steel structures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Many existing steel structures are exposed to degradation due to corrosion or fatigue and to increasing loads. Their reliability assessment is then needed. The key question is whether a particular structure can be preserved ‘as it is’, or needs to be strengthened, or whether it needs to be replaced. Unnecessary replacements of existing structures may be avoided and the remaining service life of existing steel structures may be authorized by: using advanced reliability verification techniques, optimizing target reliability, and obtaining data for a specific site or structure. In this contribution, the application of advanced reliability approaches is illustrated by the assessment of an existing steel structure. The case study demonstrates that such approaches may significantly improve assessment and allow to increase the load-bearing capacity of the structure (in the case under investigation by 10 to 20%). Improvements in reliability assessment are attributed to the use of an optimal target reliability level, case-specific statistical parameters and probabilistic distributions of the basic variables, and adjusted partial factors.
Rocznik
Strony
13--24
Opis fizyczny
Bibliogr. 35 poz., fig., tab.
Twórcy
  • Department of Structural Reliability; Czech Technical University in Prague; Republika Czeska
  • Department of Structural Reliability; Czech Technical University in Prague; Republika Czeska
  • Department of Structural Reliability; Czech Technical University in Prague; Republika Czeska
autor
  • Department of Building Structures; Bialystok University of Technology; Polska
Bibliografia
  • 1. Sykora M., Mlcoch J. and Ryjacek P., “Uncertainties in Characteristic Strengths of Historic Steels Using Non-Destructive Techniques”, Trans. VSB - Tech. Univ. Ostrava, Civ. Eng. Ser, Ostrava, vol. 19, no. 2, 2019, pp. 65–70. https://doi.org/10.35181/tces-2019-0022
  • 2. Sýkora M., Holický M. and Diamantidis D., “Probabilistic updating in the reliability assessment of industrial heritage structures”, HERON, vol. 59(2/3), 2014, pp. 59-78.
  • 3. Sýkora M., Holický M. and Markova J., “Verification of existing reinforced concrete bridges using the semi-probabilistic approach”, Engineering Structures, vol. 56, 2013, pp. 1419–1426. https://doi.org/10.1016/j.engstruct.2013.07.015
  • 4. Sýkora M. and Holický M., “Verification of existing reinforced concrete structures using the design value method”, in Proceedings of the 3th International Symposium on Life-Cycle Civil Engineering, Vienna, Austria, Leiden. 2012. pp. 821-828.
  • 5. fib Bulletin 80. Partial Factor Methods for Existing Structures. Recommendation, ed. Caspeele R. // fib. 2016. 129 p. ISBN 978-2-88394-120-5.
  • 6. EN 1990. Eurocode - Basis of structural design. Brussels: CEN. 2002.
  • 7. ISO 2394. General Principles on Reliability for Structures. 4th ed. Geneve, Switzerland: ISO, 2015. p. 111.
  • 8. Faber M.H., “Reliability based assessment of existing structures”, Progress in Structural Engineering and Materials, vol. 2, 2000, pp. 247–53. https://doi.org/10.1002/1528-2716(200004/06)2:2<247::AID-PSE31>3.0.CO;2-H
  • 9. Schueremans L. and Van Gemert D., “Assessing the safety of existing structures: reliability based assessment framework, examples and application”, Journal of Civil Engineering and Management, vol. X, 2004, pp. 131–41. https://doi.org/10.3846/13923730.2004.9636297
  • 10. Diamantidis D., Sykora M. and Lenzi D., “Optimizing Monitoring: Standards, Reliability Basis and Application to Assessment of Roof Snow Load Risks”, Structural Engineering International - Journal of IABSE, vol. 28(3), 2018, pp. 269-279. https://doi.org/10.1080/10168664.2018.1462131
  • 11. Braml T., Manfred K. and Mangerig I., “Use of Monitoring Data for a Probabilistic Analysis of Structures”, in IABSE Symposium: Large Structures and Infrastructures for Environmentally Constrained and Urbanised Areas. 2010, pp. 126-127. https://doi.org/10.2749/222137810796012252
  • 12. Caspeele R., Sýkora M., Allaix D.L. and Steenbergen R., “The design value method and adjusted partial factor approach for existing structures”, Structural Engineering International, vol. 23. no. 4, 2013, pp. 386-393. https://doi.org/10.2749/101686613X13627347100194
  • 13. JCSS Probabilistic Model Code, Joint Committee of Structural Safety. 2001.
  • 14. CEN TC250/ Ad Hoc Group Reliability of Eurocodes (convenor - Ton Vrouwenvelder) Technical Report for the reliability background of Eurocodes. Draft June 2021. p.165, 2021.
  • 15. Lenner R., Ryjacek P. and Sykora M., “Resistance models for semi-probabilistic assessment of historic steel bridges”, in IABSE Symposium, Wroclaw 2020: Synergy of Culture and Civil Engineering. Wrocław, 2020, pp. 1061–1068.
  • 16. Nadolski V. and Sykora M., “Uncertainty in Resistance Models for Steel Members”, Trans. VŠB – Tech. Univ. Ostrava, Civ. Eng. Ser., vol. 14, no. 2, 2015, pp. 26–37. https://doi.org/10.2478/tvsb-2014-0028
  • 17. ISO 4355. Basis for design of structures - Determination of snow loads on roofs. Geneve: ISO, 2013. 40 p.
  • 18. EN 1991-1-3. Eurocode 1: Actions on structures - Part 1-3: General actions; Snow loads. Brussels: CEN, 2003.
  • 19. Sanpaolesi L., Snow Loads (Phase 1 Final Report to the European Commission, Scientific Support Activity in the Field of Structural Stability of Civil Engineering Works). Pisa: Univ. of Pisa. 1998.
  • 20. Sadovský Z., Response to discussion on “Exceptional snowfalls and the assessment of accidental loads for structural design” from M. Kasperski [Cold Regions Science and Technology 101 (2014) 83–86], Cold Regions Science and Technology, vol. 110, 2015, pp. 67-69. https://doi.org/10.1016/j.coldregions.2014.11.008
  • 21. Rózsás Á., Sykora M. and László Gergely Vigh. “Long-Term Trends in Annual Ground Snow Maxima for the Carpathian Region”, Applied Mechanics and Materials, vol. 821, 2016, pp. 753-760. https://doi.org/10.4028/www.scientific.net/AMM.821.753
  • 22. Rózsás Á. and Sykora M. “Model Comparison and Quantification of Statistical Uncertainties for Annual Maxima of Ground Snow Loads”, in Safety and Reliability of Complex Engineered Systems – Proceedings of the European Safety and Reliability Conference ESREL 2015, 2015, pp. 2667-2674.
  • 23. Rózsás Á. and Sykora M., “Effect of Statistical Uncertainties in Ground Snow Load on Structural Reliability”, in Proceedings of IABSE Conference Geneva 2015, Structural Engineering: Providing Solutions to Global Challenges, 2015. pp. 220-227.
  • 24. Nadolski V., Rózsás Á. and Sykora M., “Calibrating Partial Factors - Methodology, Input Data and Case Study of Steel Structures”, Periodica Polytechnica, vol. 63(1), 2019, pp. 222-242. https://doi.org/10.3311/PPci.12822
  • 25. Ceribasi S., “Reliability of Steel Truss Roof Systems Under Variable Snow Load Profiles”, International Journal of Steel Structures, vol. 20, 2020, pp. 567–582. https://doi.org/10.1007/s13296-020-00307-7
  • 26. Klasson A., Björnsson I., Crocetti R. and Frühwald Hansson E., “Slender Roof Structures - Failure Reviews and a Qualitative Survey of Experienced Structural Engineers”, Structures, vol. 15, 2018, pp. 174-183. https://doi.org/10.1016/j.istruc.2018.06.009
  • 27. prEN 1990-2 Eurocode - Basis of assessment and retrofitting of existing structures: general rules and actions (draft April 2021). CEN/TC 250/WG 2. – 2021.
  • 28. Holický M., “Optimisation of the target reliability for temporary structures”, Civil Engineering and Environmental Systems, vol. 30, no. 2, 2013, pp. 87-96. https://doi.org/10.1080/10286608.2012.733373
  • 29. Steenbergen R. and Vrouwenvelder A., “Safety philosophy for existing structures and partial factors for traffic load on bridges”, Heron, vol. 55, no. 2, 2010, pp. 123-140.
  • 30. Steenbergen R., Sýkora M., Diamantidis D. and, Holický M., “Economic and human safety reliability levels for existing structures”, Structural Concrete, vol. 16, no. 3, 2015, pp. 323-332. https://doi.org/10.1002/suco.201500022
  • 31. Sýkora M., Diamantidis D., Holický M. and Jung K., “Target Reliability for Existing Structures Considering Economic and Societal Aspects”, Structure and Infrastructure Engineering, vol. 13, no. 1, 2017, pp. 181-194. https://doi.org/10.1201/9781351204590-16
  • 32. Holicky M., “Safety design of lightweight roofs exposed to snow loads”, Engineering Sciences, vol. 58, 2007, pp. 51-57. https://doi.org/ 10.2495/EN070061
  • 33. Holický M. and Marková J., “Reliability of light-weight roofs exposed to snow load”. Journal Civ. Eng., vol. 16, no. 3, 2007, pp. 65–69.
  • 34. Maslak M. and Małgorzata S., “The axial force influence on the flexibility of steel joints subject to bending under fully developed fire conditions”, Budownictwo i Architektura, vol. 13, 2014, pp. 251-258. https://doi.org/10.35784/bud-arch.1827
  • 35. Gulvanessian H. and Holicky M., “Eurocodes: using reliability analysis to combine action effects”, Proceedings of the Institution of Civil Engineers - Structures and Buildings, vol. 158(4), 2015, pp. 243–252. https://doi.org/10.1680/stbu.2005.158.4.243
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de223bd4-9306-42ce-b968-a0bbbfb7a339
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.