Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The photocatalytic process of phenol oxidation and Cr(VI) reduction in the presence of nano-silica modified titania was carried out. The activity of composites was tested using two different light sources. The photocatalysts with 10% of nanosilica showed the highest activity. The calcination temperature (200–800 °C) significantly determined the sensitivity of the obtained materials to the light source used. Photocatalysts alternately adsorbed and desorbed Cr(VI) ions from the reaction mixture during irradiation. In the one-component mixture, complete oxidation of phenol was observed using material calcined at 650 °C, after 3 h of UV-VIS irradiation. In the reaction mixture of Cr(VI) and phenol, the highest activity was demonstrated by photocatalyst calcined at 300 °C. The concentration of phenol decreased in proportion to the decrease of chromium ions. The obtained titania-silica composites showed oxidizing properties towards phenol and reductive properties toward Cr(VI) ions.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
23--29
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wz.
Twórcy
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Pułaskiego 10, 70-322 Szczecin, Poland, Department of Inorganic Chemical Technology and Environment Engineering
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Pułaskiego 10, 70-322 Szczecin, Poland, Department of Inorganic Chemical Technology and Environment Engineering
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Pułaskiego 10, 70-322 Szczecin, Poland, Department of Chemical Organic Technology and Polymeric Materials
Bibliografia
- 1. Al-Hajji, LA., Ismail, AA., Bumajdad, A., Alsaidi, M., Ahmed, SA., Al-Hazza, A. & Ahmed, N. (2021). Photodegradation of powerful five estrogens collected from waste water treatment plant over visible-light-driven Au/TiO2 photocatalyst. Environ. Technol. Innov. 24, 101958. DOI: 10.1016/j.eti.2021.101958.
- 2. Jihyun, R. & Eunsung, K. (2016). Heterogeneous photocatalytic degradation of sulfamethoxazole in water using a biochar- supported TiO2 photocatalyst. J. Environ. Manage. 180, 94–101. DOI: 10.1016/j.jenvman.2016.05.016.
- 3. Rejek, M. & Grzechulska-Damszel, J. (2018). Degradation of sertraline in water by suspended and supported TiO2. Pol. J. Chem. Technol. 20(2), 107–112. DOI: 10.2478/pjct-2018-0030.
- 4. Rejek, M., Grzechulska-Damszel, J. & Schmidt, B. (2021). Synthesis, Characterization, and Evaluation of Degussa P25/Chitosan Composites for the Photocatalytic Removal of Sertraline and Acid Red 18 from Water. J. Polym. Environ. 29, 3660–3667. DOI: 10.1007/s10924-021-02138-x.
- 5. Ochiai, T. & Fujishima, A. (2012). Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification. J. Photochem. Photobiol. C. 13, 247–262. DOI: 10.1016/j.jphotochemrev.2012.07.001.
- 6. Nilchi, A., Janitabar-Darzi, S. Mahjoub, A.R. & Rasouli-Garmarodi, S. (2010). New TiO2/ SiO2 nanocomposites – Phase transformations and photocatalytic studies. Colloids Surf. A.361, 25–30. DOI: 10.1016/j.colsurfa.2010.03.006.
- 7. Czech, B. & Tyszczuk-Rotko, K. (2018). Visible-light-driven photocatalytic removal of acetaminophen from water using a novel MWCNT-TiO2-SiO2 photocatalysts. Sep. Purif. Technol. 206(29), 343–355. DOI: 10.1016/j.seppur.2018.06.025.
- 8. Dahl, M., Liu, Y. & Yin, Y. (2014). Composite titanium dioxide nanomaterials. Chem. Rev. 114, 853–9889. DOI: 10.1021/cr400634p.
- 9. Shchelokova, E.A., Tyukavkina, V.V., Tsyryatyeva, A.V. & Kasikov, A.G. ( 2021). Synthesis and characterization of SiO2-TiO2 nanoparticles and their effect on the strength of self-cleaning cement composites. Constr. Build. Mater. 283, 122769. DOI: 10.1016/j.conbuildmat.2021.122769.
- 10. Stokova, V., Gubareva, E., Ogurtsova, Y., Fediuk, R., Zhao, P., Vatin, N. & Vasilev, Y. (2021). Obtaining and properties of photocatalytic composite material of the SiO2-TiO2 system based on various types of silica raw materials. Nanomaterials 11, 1–26. DOI: 10.3390/nano11040866.
- 11. Pakdel, E., Daoud, W.A., Seyedin, S., Wang, J., Razal, J.M., Sun, L. & Wang, X. (2018). Tunable photocatalytic selectivity of TiO2/SiO2 nanocomposites: Effect of silica and isolation. Colloids Surf. A. 552, 130–141. DOI: 10.1016/j.colsurfa.2018.04.070.
- 12. Udom, I., Myers, P.D., Ram, M.K., Hepp, A.F., Archibong, E., Stefanakos, E.K. & Goswami, D.Y. (2014). Optimization of photocatalytic degradation of phenol using simple photocatalytic reactor. Am. J. Analyt. Chem. 5, 743–750. DOI: 10.4236/ajac.2014.511083.
- 13. Trinh, D.T.T., Le, S.T.T., Channei, D., Khanitchaidecha, W. & Nakaruk, A. (2016). Investigation of intermediate compounds of phenol in photocatalysis process. Int. J. Chem. Eng. Appl. 7(4), 273–276. DOI: 10.18178/ijcea.2016.7.4.588.
- 14. Rashmi, A., Brundabana, N. & Kulamani, P. (2018). Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction. Beilstein J. Nanotechnol. 9, 1448–1470. DOI: 10.3762/bjnano.9.137.
- 15. Brasili, E., Bavasso, I., Petruccelli, V., Vilardi, G., Valletta, A., Bosco, C.D., Gentili, A., Pasqua, G. & Di Palma, L. (2020). Remediation of hexavalent chromium contaminated water through zero-valent iron nanoparticles and effects on tomato plant growth performance. Sci. Rep. 10, 1–11. DOI: 10.1038/s41598-020-58639-7.
- 16. Suma, N., Prakash, B.S.J. & Iyrngar, P. (2011). Oxidation of phenol, o-nitro phenol, o-chloro phenol and trichloroethylene present in water using surfactant immobilized manganate and impregnated metal cations. Silicon 3, 13–26. DOI: 10.1007/s12633-010-9063-6.
- 17. Madhuranthakam, C.M.R., Thomas, A., Akhter, Z., Fernandes, A.Q. & Elkamel, A. (2021). Removal of chromium(VI) from contaminated water using untreated mooring leaves as biosorbent. Pollutants 1, 51–64. DOI: 10.3390/pollutants1010005.
- 18. Nasiri, E.F., Kebria, D.Y. & Qaderi, F. (2018). An experimental study on the simultaneous phenol and chromium removal from water using titanium dioxide photocatalyst. Civ. Eng. J. 4(3), 585–593. DOI: 10.28991/cej-0309117.
- 19. WHO (1996). Guidelines for drinking-water quality. 2nd ed. Vol 2: Health criteria and other supporting information. Geneva: World Health Organization.
- 20. WHO (1994). Phenol: health and safety guide.
- 21. Lopes, P.R.M., Montagnolli, R.N., Bidoia, E.D. (2011). Analytical methods in photoelectrochemical treatment of phenol. J. Braz. Chem. Soc. 22(9), 1758–1764. DOI: 10.1590/S0103-50532011000900019.
- 22. Santos, E.J., Sabatke, M., Herrmann, A.B., Sturgeon, R.E. (2021). Evaluation of sample preparation procedures for determination of Cr(VI) in Cr2O3 pigments by Vis spectrophotometry. Braz. Archi. Biol. Technol. 64, 1–12. DOI: 10.1590/1678-4324-75years-2021200455.
- 23. Borges, S.S., Korn, M. & Costa Lima, J.L.F. (2002). Chromium(III) determination with 1,5-diphenylcarbazide based on the oxidative effect of chlorine radicals generated from CCl4 sonolysis in aqueous solution. Anal. Sci. 18, 1361–1366. DOI: 10.2116/analsci.18.1361. DOI: 10.2116/analsci.18.1361.
- 24. Kapridaki, C., Maravelaki, N-P. (2015). TiO2-SiO2-PDMS nanocomposites with self-cleaning properties for stone protection and consolidation. Geol. Soc. Spec. Publ. 416, 285–292. DOI: 10.1144/SP416.6.
- 25. Rowlette, P. & Wolden, C. (2009). Digital control of SiO2-TiO2 mixed-metal oxides by pulsed PECVD. ACS App. Mater. Interfaces, 1(11), 2586–91. DOI: 10.1021/am900506y.
- 26. Cani, D., van der Waal, J.C. & Pescarmona, P.P. (2021). Highly-accessible, doped TiO2 nanoparticles embedded at the surface of SiO2 as photocatalysts for the degradation of pollutants under visible and UV radiation. Appl. Catal. A., 621(5), 1–10. DOI: 10.1016/j.apcata.2021.118179.
- 27. Praveen, P., Viruthagiri, G., Mugundan, S. & Shanmugam, N. (2014). Structural, optical and morphological analyses of pristine titanium di-oxide nanoparticles – synthesized via sol-gel route. Spectrochim. Acta A. 117, 622–629. DOI: 10.1016/j.saa.2013.09.037.
- 28. Chien-Lin, T., Yi-Kwan, C., Shuai-Han, W., Zih-Wei, P. & Jong-Liang, L. (2010). 2-Ethanolamine on TiO2 investigated by in situ infrared spectroscopy. Adsorption, photochemistry and its interaction with CO2. J. Phys. Chem. C. 114(27), 11835–43. DOI: 10.1021/jp9117166.
- 29. Wanghui, C., Chika, T., Razavi, K., Masayoshi, F., Takashi, S. (2016). SiO2/TiO2 double-shell hollow particles: fabrication and UV-VIS spectrum characterization. Adv. Powder Technol. 27(3), 812–818. DOI: 10.1016/j.apt.2015.
- 30. Bo, Z., Dong, R., Jin, C. & Chen, Z. (2017). Facile synthesis of SiO2@TiO2 crystallite photocatalysts with enhanced interaction level and high light absorption efficiency. Nanotechnol. Environ. Eng. 2(17), 1–11. DOI: 10.1007/s41204-017-0028-5.
- 31. Chen, WH., Takai, C., Khosroshahi, HR., Fuji, M. & Shirai, T. (2016). SiO2/TiO2 double-shell hollow particles: fabrication and UV–Vis spectrum characterization. Adv. Powdered Technol. 27, 812–818. DOI: 10.1016/j.apt.2015.
- 32. Hendrix, Y., Lazaro, A., Yu, Q. & Brouwers, J. (2015). Titania-Silica Composites: A Review on the Photocatalytic Activity and Synthesis Methods. World J. Eng. 5, 161–177. DOI: 10.4236/wjnse.2015.54018.
- 33. Llano, B., Hidalgo, M.C., Rios, L.A. & Navio, J.A. (2014). Effect of the type of acid used in the synthesis of titania–silica mixed oxides on their photocatalytic properties. Appl. Catal. B 150–151, 389–395. DOI: 10.1016/j.apcatb.2013.12.039.
- 34. Sirimahachai, U., Ndiege, N., Chandrasekharan, R., Wongnawa, S. & Shannon, M.A. (2010). Nanosized TiO2 particles decorated on SiO2 spheres (TiO2/SiO2): synthesis and photocatalytic activities. J. Sol-Gel Sci. Technol. 56 (1), 53–60. DOI: 10.1007/s10971-010-2272-z.
- 35. Balachandran, K., Venckatesh, R., Sivaraj, R. & Rajiv, P. (2014). TiO2 nanoparticles versus TiO2/SiO2 nanocomposites: a comparative study of photo catalysis on acid red 88. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 128, 468–474. DOI: 10.1016/j.saa.2014.02.127.
- 36. Kibombo, H.S., Peng, R., Rasalingam, S. & Koodali, R.T. (2012). Versatility of heterogeneous photocatalysis: synthetic methodologies epitomizing the role of silica support in TiO2 based mixed oxides. Catal. Sci. Technol. 2, 1737–1766. DOI: 10.1039/C2CY20247F.
- 37. Seriani, N., Pinilla, C., Cereda, S., De Vita, A. & Scan-dolo, S. (2012). Titania-silica interfaces, J. Phys. Chem. C 116, 11062–11067. DOI: 10.1021/jp301584h.
- 38. Ren, J., Li, Z., Liu, S., Xing, Y. & Xie, K. (2008). Silica-titania mixed oxides: Si–O–Ti connectivity, coordination of titanium, and surface acidic properties. Catal. Lett. 124, 185–194. DOI: 10.1007/s10562-008-9500-y.
- 39. Gobara, H., El-Salamony, R., Mohamed, D., Mishrif, M., Moustafa, Y. & Gendy, T. (2014). Use of SiO2- TiO2 nanocomposite as photocatalyst for the removal of trichlorophenol: a kinetic study and numerical evaluation, Chem. Mater. Res. 6, 63–81.
- 40. de Chiara, M.L.V., Pal S., Licciulli, A., Amodio, M.L. & Colelli, G. (2015). Photocatalytic degradation of ethylene on mesoporous TiO2/SiO2 nanocomposites: effects on the ripening of mature green tomatoes. Biosyst. Eng. 132, 61–70. DOI: 10.1016/j.biosystemseng.2015.02.008.
- 41. Papadam, T., Xekoukoulotakis, N.P., Poulios, I. & Mantzavinos, D. (2007). Photocatalytic transformation of acid orange 20 and Cr(VI) in aqueous TiO2 suspensions. J. Photochem. Photobiol. A 186, 308 – 315. DOI:10.1016/j.jphotochem.2006.08.023.
- 42. Acharya, R., Naik, B. & Parida, K. (2018). Cr(VI) remediation from aqueous environment through modified- TiO2-mediated photocatalytic reduction. Beilstein J. Nanotechnol. 9, 1448–1470. DOI: 10.3762/bjnano.9.137.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de209af1-7362-4cb0-b786-82771e953273