Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Identification and determination of the mechanical properties of biological materials, especially fruits, vegetables and industrial plants, can be made using commonly applied stress relaxation tests. They are of particular significance because their results make it possible to propose a mechanical model of studied material. The aim of the study was to determine the effects of initial deformation and deformation velocity on the parameters of generalised Maxwell model during stress relaxation in the sugar beet root. The tests were carried out by means of the texture analyser (model TA.HD plus, Stable Micro Systems, Goldaming, UK) at the three deformations: 2.0, 3.5 and 5.0 mm and the four deformation velocities: 1, 2, 10, and 20 mm·s–1. The cut sugar beet samples used in the experiment were cylindrical in shape, with a 9.5 mm diameter and a 20 mm height. They were initially compressed along the vertical axis in a state of uniaxial stress and constant deformation was maintained while recording the force response for 35 seconds. The two-branched generalised Maxwell model with an additional elastic element was used to describe the experimental force response curves. The sample dimensions as well as the initial deformation velocity were taken into consideration in the model formula. Two relaxation times of the model decreased with the increasing deformation velocity and increased with the increasing deformation value. The dependences of the obtained relaxation times on the phenomena inside the tissue such as the flow of fluids and gases under the load were interpreted. Changes of model parameters as a function of deformation velocity could testify the appearance of internal micro damages in the material during deformation. The tendency of increase in the peak force response along with the increase of deformation velocity shows typical viscoelastic behaviour of sugar beet root flesh.
Wydawca
Rocznik
Tom
Strony
296--303
Opis fizyczny
Bibliogr. 30 poz., fig., tab.
Twórcy
autor
- Department of Mechanical Engineering and Automatic Control, University of Life Sciences in Lublin, ul. Głęboka 28, 20-612 Lublin, Poland
autor
- Department of Mechanical Engineering and Automatic Control, University of Life Sciences in Lublin, ul. Głęboka 28, 20-612 Lublin, Poland
autor
- Department of Mechanical Engineering and Automatic Control, University of Life Sciences in Lublin, ul. Głęboka 28, 20-612 Lublin, Poland
Bibliografia
- 1. Yildiz M.J., Monika Kalinowska M., Kalinowska-Wichrowska K., Gołębiewska E., Tarasewicz P., Bobin T., Tarapata D., Szatyłowicz E., Piekut J. A short overview of the possibilities of using waste from the agri-food industry. Advances in Science and Technology Research Journal 2023; 17(2): 342–352.
- 2. Bentini M., Caprara C., Rondelli V. Mechanical properties of sugar beet roots. Transactions of the ASAE 2005; 48(4): 1429–1439.
- 3. Gemtos, T.A. Sugar beet root properties in relation to harvesting damage. Agricultural Engineering International 1999; The CIGR e-journal 1.
- 4. Zhao W., Fang Y., Zhang Q-A., Guo Y., Gao G., Yi X. Correlation analysis between chemical or texture attributes and stress relaxation properties of ‘Fuji’ apple. Postharvest Biology and Technology 2017; 129: 45–51.
- 5. Moresi M., Pallottino F., Costa C., Menesatti P. Visc elastic properties of Tarocco orange fruit. Food Bioprocess Technol 2012; 5: 2360–2369.
- 6. Ince A., Cevik M.Y., Vursavus K.K. Effects of maturity stages on textural mechanical properties of tomato. International Journal Agricultural and Biological Engineering 2016; 9(6): 200–206.
- 7. Skic A., Kołodziej P., Stropek Z., Beer-Lech K., Drabik K., Skic K., Branco R. Analysis of the mechanical properties of femurs and eggshells of two selected Japanese quail lines under quasi-static and impact loading conditions. Advances in Science and Technology Research Journal 2024; 18(7): 437–446.
- 8. Rybář R. External factors and their impact on the metabolism and technological quality of stored sugar beet. Research in Agricultural Engineering 2004; 50(2): 81–87.
- 9. Gorzelany J., Puchalski C. Mechanical properties of sugar beet roots during harvest and storage. International Agrophysics 2000; 14(2): 173–179.
- 10. Beyaz A., Colak A., Baris Eminoglu M., Ozturk R., Ihsan Acar A. Determination of work quality at different types of sugar beet harvest machines. In: Proc. of CIGR XVII World Congress, Québec City, Canada 2010; 13–17.
- 11. Rashidi M., Yarmohammadi–Samani P. Effect of different tillage methods on biological growth and quality characteristics of sugar beet. Middle-East Journal of Scientific Research 2013; 14(6): 773–778.
- 12. Kołodziej P., Stropek Z., Gołacki K. Mechanical properties of sugar beet roots under impact loading conditions. Materials 2023; 16: 1281.
- 13. Vukov K., Patkei G. Die mechanischen Beschädigungen der Zuckerrüben. Zuckerindustrie 1978; 103: 848–850.
- 14. Drath L. Untersuchungen über die mechanischen Eigenschaften von Zuckerrüben. Zuckerindustrie 1976; 29: 433–439.
- 15. Drath L., Strauß R., Schiweck H. Untersuchungen über die mechanischen Eigenschaften von Zuckerrüben. II. Einflussfaktoren auf die Bruchfestigkeit von Rüben. Zuckerindustrie 1984; 109: 993–1007.
- 16. Bzowska–Bakalarz M. Determination of the mechanical properties of roots of sugar beets directly after harvest. Zeszyty Problemowe Postępów Nauk Rolniczych 1993; 399: 13–18.
- 17. Alizadeh H., Segerlind L.J. Some material properties of sugar beet roots. Applied Engineering in Agriculture 1997; 13(4): 507–510.
- 18. Nedomova Š., Kumbar V., Pytel R., Buchar J. Mechanical properties of sugar beet root during storage. International Agrophysics 2017; 31: 507–513.
- 19. Chen P. Creep response of a generalized Maxwell model. International Agrophysics 1994; 8: 555–558.
- 20. Careglio C.A., Canales C., Papeleux L., Ponthot J-Ph., García Garino C.G., Mirassob A.E. An implementation of the generalized Maxwell viscoelastic constitutive model. Mecánica Computacional XXXIII 2014; 1179–1192.
- 21. Stropek Z., Gołacki K. Stress relaxation of apples at different deformation velocities and temperatures. Transactions of the ASABE 2019; 62(1): 115–121.
- 22. Saeidirad M.H., Rohani A., Zarifneshat S. Predictions of viscoelastic behavior of pomegranate using artificial neural network and Maxwell model. Computers and Electronics in Agriculture 2013; 98: 1–7.
- 23. Alirezaei M., Zare D., Nassiri S.M. Application of computer vision for determining viscoelastic characteristics of date fruits. Journal of Food Engineering 2013; 118: 326–332.
- 24. Nasirahmadi A., Wilczek U., Hensel O. Sugar beet damage detection during harvesting using different convolutional neural network models. Agriculture 2021; 11: 1111.
- 25. Kołodziej P., Gołacki K., Boryga M. Impact characteristics of sugar beet root during postharvest storage. International Agrophysics 2019; 33: 355–361.
- 26. Kleuker G., Hoffmann C.M. Method development for the determination of textural properties of sugar beet roots. Sugar Industry 2019; 144(7): 392–400.
- 27. Wang J., Wang C., Mo X., Wu J. Rheological property for nutritional parameters prediction of the Korla pear. Processes 2023; 11: 2871.
- 28. Stropek Z., Gołacki K. Viscoelastic response of apple flesh in a wide range of mechanical loading rates. International Agrophysics 2018; 32: 335–340.
- 29. Gołacki K., Stropek Z., Kołodziej P., Gładyszewska B., Rejak A., Mościcki L., Boryga M. Studies on stress relaxation process in biodegradable starch film. Agriculture and Agricultural Science Procedia 2015; 7: 80–86.
- 30. Winisdorffer G., Musse M., Quellec S., Barbacci A., Gall S.L., Mariette F., Lahaye M. Analysis of the dynamic mechanical properties of apple tissue and relationships with the intracellular water status, gas distribution, histological properties, and chemical composition. Postharvest Biology and Technology 2015; 104: 1–16.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de19f305-ea93-42a0-b2e2-c8a4a6f295dd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.