PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kinetic characterization of adolescent scoliosis patients with Lenke 1B+

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this study was to investigate dynamic responses of Lenke1B+ spines of adolescent scoliosis patients to different frequencies. Methods: Modal analysis, harmonic response analysis and transient dynamics of a full spine model inverted by the finite element method using Abaqus. Results: The first-order axial resonance frequency of 4.51 Hz produced a maximum axial displacement of 30.15 mm. Comparison of the five frequencies indicated that the 10 Hz frequency response curve was smoothest, while the amplitudefrequency curve at 4 Hz showed the greatest fluctuations accompanied by resonance phenomena. At the resonance frequency, the maximum axial displacement of the thoracic spine was at T1, being 31.17 mm, while that of the lumbar spine was at L1, with 0.56 mm. The maximum stress of the intervertebral discs was located between T4 and T5, representing 3.496 MPa, the maximum stress in the small joints was located in the concavity between T7 and T8, with 19.97 MPa and the maximum axial displacement was 54.31 mm, located in the convexity between T6 and T7. Conclusions: The first-order axial resonance frequency was the most harmful to the patient. The uneven stress distribution in the spine was closely related to the degree of spinal deformity, with the thoracic spine being more sensitive to low frequencies than the lumbar spine. The concave side of the spinal deformity was more prone to stress concentrations while the convex side was more prone to deformity, indicating that disc degeneration and small-joint disease are more likely to occur at the most deformed part of the spine.
Rocznik
Strony
75--86
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
autor
  • Xinjiang University, China
autor
  • Xinjiang University, China
autor
  • Xinjiang University, China
Bibliografia
  • [1] ALASSAF A., ALMOHIMEED I., ALGHANNAM M., ALOTAIBI S., ALHUSSAINI K., ALEID A., ALOLAYAN S., SIKKANDAR M.Y., ALHASHIM M.M., SHEIK S.B., SUDHARSAN N.M., Time-dependent biomechanical evaluation for corrective planning of scoliosis using finite element analysis – A comprehensive approach, Heliyon, 2024, 10 (5), e26946, DOI: 10.1016/j.heliyon.2024.e26946.
  • [2] AN J.K., BERMAN D., SCHULZ J., Back pain in adolescent idiopathic scoliosis: A comprehensive review, J. Child Orthop., 2023, 17 (2), 126–140, DOI: 10.1177/18632521221149058.
  • [3] DREISCHARF M., ZANDER T., BERGMANN G., ROHLMANN A., A non-optimized follower load path may cause considerable intervertebral rotations, J. Biomech., 2010, 43 (13), 2625–2628, DOI: 10.1016/j.jbiomech.2010.05.033.
  • [4] FAN W., An in-limit elemental study of the dynamic properties of the human total lumbar spine in a vibration environment, Northeastern University, 2017.
  • [5] FAN W., GUO L.X., A comparison of the influence of three different lumbar interbody fusion approaches on stress in the pedicle screw fixation system: Finite element static and vibration analyses, Int. J. Numer. Method. Biomed. Eng. 2019, 35 (3), e3162, DOI: 10.1002/cnm.3162.
  • [6] FAN W., GUO L.X., Influence of different frequencies of axial cyclic loading on time-domain vibration response of the lumbar spine: A finite element study, Comput. Biol. Med., 2017, 86, 75–81, DOI: 10.1016/j.compbiomed.2017.05.004.
  • [7] GOEL V.K., PARK H., KONG W.Z., Investigation of vibration characteristics of the ligamentous lumbar spine using the finite element approach, J. Biomech. Eng., 1994, 116 (4), 377–383, DOI: 10.1115/1.2895787.
  • [8] GUO L.X., FAN W., Dynamic response of the lumbar spine to whole-body vibration under a compressive follower preload, Spine, 2018, 43 (3), E143–E153, DOI: 10.1097/BRS.0000000000002247.
  • [9] GUO L.X., FAN W., Impact of material properties of intervertebral disc on dynamic response of the human lumbar spine to vertical vibration: A finite element sensitivity study, Med. Biol. Eng. Comput., 2019, 57 (1), 221–229, DOI: 10.1007/s11517-018-1873-5.
  • [10] GUO L.X., LI W.J., Finite element modeling and static/ dynamic validation of thoracolumbar-pelvic segment, Comput. Methods Biomech. Biomed. Eng., 2020, 23 (2), 69–80, DOI: 10.1080/10255842.2019.1699543.
  • [11] GUO L.X., TEO E.C., LEE K.K., ZHANG Q.H., Vibration characteristics of the human spine under axial cyclic loads: Effect of frequency and damping, Spine, 2005, 30 (6), 631–637, DOI: 10.1097/01.brs.0000155409.11832.02.
  • [12] JIA S.W., LI Y., XIE J.D., TIAN T., ZHANG S.X., HAN L., Differential response to vibration of three forms of scoliosis during axial cyclic loading: A finite element study, BMC Musculoskelet Disord., 2019, 20 (1), 370, DOI: 10.1186/s12891-019-2728-4.
  • [13] JIA S.W., LIN L.Y., YANG H.F., XIE J.D., LIU Z.F., ZHANG T.Y., FAN J., HAN L., Biodynamic responses of adolescent idiopathic scoliosis exposed to vibration, Med. Biol. Eng. Comput., 2023, 61 (1), 271–284, DOI: 10.1007/s11517-022-02710-0.
  • [14] JIA S.W., ZHANG S.X., FAN S.C., LI Y., WU X.D., XIE J.D., HAN L., Finite element analysis of lumbosacral vertebral structures in scoliosis and their deformation trends, Journal of Medical Biomechanics, 2017, 32 (3), 235–241.
  • [15] KASRA M., SHIRAZI-ADL A., DROUIN G., Dynamics of human lumbar intervertebral joints. Experimental and finite-element investigations, Spine, 1992, 17 (1), 93–102, DOI: 10.1097/00007632-199201000-00014.
  • [16] KONG W.Z., GOEL V.K., Ability of the finite element models to predict response of the human spine to sinusoidal vertical vibration, Spine, 2003, 28 (17), 1961–1967, DOI: 10.1097/01.BRS.0000083236.33361.C5.
  • [17] KUZNIA A.L., HERNANDEZ A.K., LEE L.U., Adolescent idiopathic scoliosis: Common questions and answers, Am. Fam. Physician, 2020, 101 (1), 19–23.
  • [18] LAU K.K.L., KWAN K.Y.H., CHEUNG J.P.Y., CHOW W., LAW K.K.P., WONG A.Y.L., CHOW D.H.K., CHEUNG M.C.K., Reliability of a three-dimensional spinal proprioception assessment for patients with adolescent idiopathic scoliosis, Eur. Spine J., 2022, 31 (11), 3013–3019, DOI: 10.1007/s00586-022-07338-0.
  • [19] LI J.H., AN Z.C., WU J.G., GAO Y.C., LU S., HE D., ZHAO Y., Construction of the adjusted scoliosis 3D finite element model and biomechanical analysis under gravity, Orthop. Surg., 2023, 15 (2), 606–616, DOI: 10.1111/os.13572.
  • [20] LI P.J., FU R.C., YANG X.Z., WANG K., CHEN H.R., Finite element method-based study for spinal vibration characteristics of the scoliosis and kyphosis lumbar spine to wholebody vibration under a compressive follower preload, Comput. Methods Biomech. Biomed. Eng., 2024, DOI: 10.1080/10255842.2024.2333925.1-10.
  • [21] LI P.J., FU R.C., YANG X.Z., WANG K., Dynamic response of idiopathic scoliosis to kyphosis, Shanghai Jiao Tong University, 2023.
  • [22] LI Q.Y., KIM H.J., SON J., KANG K.T., CHANG B.S., LEE C.K., SEOK H.S., YEOM J.S., Biomechanical analysis of lumbar decompression surgery in relation to degenerative changes in the lumbar spine – validated finite element analysis, Comput. Biol. Med., 2017, 89, 512–519, DOI: 10.1016/j.compbiomed.2017. 09.003.
  • [23] LI X.F., LIU Z.D., DAI L.Y., HU G.Y., WANG Z.Y., ZHONG G.B., ZANG W.P., A study of the mechanism of the effect of axial loading on idiopathic scoliosis, Chinese Journal of Pediatric Surgery, 2010, 31 (6), 435–439.
  • [24] LUO H.T., LIU G.M., FU J., YU C.S., Vibration response analysis of the lumbar spine based on high-speed train crew, 2017 IEEE 7th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems, 2017, DOI: 10.1109/cyber.2017.8446591. 220–224.
  • [25] MALMQVIST M., TROPP H., LYTH J., WIREHN A.B., CASTELEIN M.R., Patients with idiopathic scoliosis run an increased risk of schizophrenia, Spine Deform., 2019, 7 (2), 262–266, DOI: 10.1016/j.jspd.2018.07.003.
  • [26] PENG L., DUAN Z.L., LI Z.Y., LI J.H., LI Y.H., WANG S., LIU W.Q., Current status and progress of research on finite element modeling and validation of adolescent idiopathic scoliosis, Tissue Engineering Research in China, 2023, 27 (27), 4393–4400.
  • [27] RAJA D., IYER S.R., PANDEY K., KRISHNAN A., PATIL S., A biomechanical study of the scoliotic thoracolumbar spine, IOP Conf. Ser. Mater Sci. Eng., 2020, 912, 022021, DOI: 10.1088/1757-899X/912/2/022021.
  • [28] RENNER S.M., NATARAJAN R.N., PATWARDHAN A.G., HAVEY R.M., VORONOV L.I., GUO B.Y., ANDERSSON G.B.J., AN H.S., Novel model to analyze the effect of a large compressive follower pre-load on range of motions in a lumbar spine, J. Biomech., 2007, 40 (6), 1326–1332, DOI: 10.1016/j.jbiomech.2006.05.019.
  • [29] SAMAAN M.C., MISSIUNA P., PETERSON D., THABANE L., Understanding the role of the immune system in adolescent idiopathic scoliosis: Immunometabolic CONnections to Scoliosis (ICONS) study protocol, BMJ Open, 2016, 6 (7), e011812, DOI: 10.1136/bmjopen-2016-011812.
  • [30] SMIT T.H., On growth and scoliosis, Eur. Spine J., 2024, 33 (6), 2439–2450, DOI: 10.1007/s00586-024-08276-9.
  • [31] STOKES I.A.F., GARDNER-MORSE M., A database of lumbar spinal mechanical behavior for validation of spinal analytical models, J. Biomech., 2016, 49 (5), 780–785, DOI: 10.1016/j.jbiomech.2016.01.035.
  • [32] WATKINS R., WATKINS R., WILLIAMS L., AHLBRAND S., GARCIA R., KARAMANIAN A., SHARP L., VO C., HEDMAN T., Stability provided by the sternum and rib cage in the thoracic spine, Spine, 2005, 30 (11), 1283–1286, DOI: 10.1097/01.brs.0000164257.69354.bb.
  • [33] WOLFF J., Das gesetz der transformation der knochen, Dtsch. Med. Wochenschr., 1892, 19 (47), 1222–1224.
  • [34] XIE J.D., ZHANG S.X., LI Y., JIA S.W., YANG H.F., CAO J., HAN L., Dynamic properties of the adolescent idiopathic scoliotic spine, Medical Biomechanics, 2018, 4 (33), 312–319.
  • [35] XU M., YANG J., LIEBERMAN I., HADDAS R., Finite element method-based analysis for effect of vibration on healthy and scoliotic spines, ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2016.
  • [36] YAHARA Y., SEKI S., MAKINO H., FUTAKAWA H., KAMEI K., KAWAGUCHI Y., Asymmetric load transmission induces facet joint subchondral sclerosis and hypertrophy in patients with idiopathic adolescent scoliosis: Evaluation using finite element model and surgical specimen, JBMR Plus, 2023, 7 (12), e10812, DOI: 10.1002/jbm4.10812.
  • [37] ZHANG C., GUO L.X., Prediction of the biomechanical behaviour of the lumbar spine under multi-axis whole-body vibration using a whole-body finite element model, Int. J. Numer. Method. Biomed. Eng., 2023, 39 (12), e3764, DOI: 10.1002/cnm.3764.
  • [38] ZHANG Q.L., CHON T., ZHANG Y., BAKER J.S., GU Y.D., Finite element analysis of the lumbar spine in adolescent idiopathic scoliosis subjected to different loads, Comput. Biol. Med., 2021, 136, 104745, DOI: 10.1016/j.compbiomed.2021.104745.
  • [39] ZHANG Y.F., LI S., LIU N., GUO H.W., QI X.H., MENG L., Finite element modal analysis of the whole spine in adolescent idiopathic scoliosis, Chinese Journal of Tissue Engineering Research, 2024, 28 (30), 4783–4787.
  • [40] ZHAO G., WANG H.W., WANG L.L., IBRAHIM Y., WAN Y., SUN J.Y., YUAN S.M., LIU X.Y., The biomechanical effects of different bag-carrying styles on lumbar spine and paraspinal muscles: A combined musculoskeletal and finite element study, Orthop. Surg., 2023, 15 (1), 315–327, DOI: 10.1111/os.13573.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de17be2d-4b0e-4062-a77a-b3ccf1b91001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.