PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effective elastic properties and pressure distribution in bidisperse granular packings: DEM simulations and experiment

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effective elastic properties and pressure distribution in granular mixtures depend on both, material and geometric properties of particles. Using the discrete element method, the effect of geometric and statistical factors on the mechanical response of binary packings of steel beads under uniaxial confined compression was studied. The ratio of the diameter of small and large spheres in bidisperse mixtures was chosen to prevent small particles from percolating through bedding. The study addressed lateral-to-vertical pressure ratio and effective elastic modulus of particulate beds. The bimodality of mixtures was found to have a strong effect on the packing density of samples with the ratio between large and small particles larger than 1.3; however, no effect of particle size ratio and contribution of particle size fractions on the distribution of pressure and elasticity of bidisperse packings was observed. Regardless on the composition of mixtures, the lateral-to-vertical pressure ratio followed the same paths with increasing contribution of small particles in mixtures. The effective elastic modulus of granular packings increased with increasing compressive load and was slightly affected by geometric and statistical factors. The experimental data followed the same trend of the DEM predictions; however, only qualitative agreement between numerical and experimental results was obtained. The discrete element method generated packings with smaller density and overpredicted pressure ratios and elastic parameters of mixtures.
Rocznik
Strony
271--280
Opis fizyczny
Bibliogr. 40 poz., rys., wykr.
Twórcy
autor
  • Institute of Agrophysics Polish Academy of Sciences, Doswiadczalna 4, 20-290 Lublin 27, Poland
autor
  • Institute of Agrophysics Polish Academy of Sciences, Doswiadczalna 4, 20-290 Lublin 27, Poland
  • Institute of Agrophysics Polish Academy of Sciences, Doswiadczalna 4, 20-290 Lublin 27, Poland
Bibliografia
  • [1] A. Kwade, D. Schulze, J. Schwedes, Determination of the stress ratio in uniaxial compression tests – Part 1, Powder Handling and Processing 6 (1) (1994) 61–65.
  • [2] A. Kwade, D. Schulze, J. Schwedes, Determination of the stress ratio in uniaxial compression tests – Part 2, Powder Handling and Processing 6 (2) (1994) 199–203.
  • [3] J. Horabik, R. Rusinek, Pressure ratio of cereal grains determined in a uniaxial compression test, International Agrophysics 16 (2002) 23–28.
  • [4] J. Amšiejus, N. Dirgėlienė, A. Norkus, Š. Skuodis, Comparison of sandy soil shear strength parameters obtained by various construction direct shear apparatuses, Archives of Civil and Mechanical Engineering 14 (2) (2014) 327–334.
  • [5] J. Wiącek, M. Molenda, Moisture-dependent physical properties of rapeseed-experimental and DEM modeling, International Agrophysics 25 (2011) 59–65.
  • [6] F. Zhou, S.G. Advani, E.D. Wetzel, Slow drag in polydisperse granular mixtures under high pressure, Physical Review E 71 (2005) 06304.
  • [7] A.J.M. Spencer, Compression and shear of a layer of granular material, Journal of Engineering Mathematics 52 (1) (2005) 251–264.
  • [8] I. Marczewska, J. Rojek, R. Kačianauskas, Investigation of the effective elastic parameters in the discrete element model of granular material by the triaxial compression test, Archives of Civil and Mechanical Engineering 16 (1) (2016) 64–75.
  • [9] O. Skrinjar, P.-L. Larsson, On discrete element modelling of compaction of powders with size ratio, Computational Materials Science 31 (1–2) (2004) 131–146.
  • [10] Y.C. Chung, J.Y. Ooi, Confined compression and rod penetration of a dense granular medium: discrete element modelling and validation, Modern Trends in Geomechanics 106 (2006) 223–239.
  • [11] M. Stasiak, M. Molenda, J. Horabik, Modulus of elasticity of rapeseeds by edometric and acoustic methods, Electronic Journal of Polish Agricultural Universities 9 (4) (2006).
  • [12] Eurocode 1, Actions on Structures, Part 4, Silos and Tanks, EN 1991-4, 2006.
  • [13] PN-89/B-03262, Polish Standard Concrete Bins for Storing Granular Materials and Silage, Design Rules, 1989 (in Polish).
  • [14] J. Wiącek, M. Molenda, J. Horabik, J.Y. Ooi, Influence of grain shape and intergranular friction on material behavior in uniaxial compression: experimental and DEM modeling, Powder Technology 217 (2012) 435–442.
  • [15] P. Parafiniuk, J. Wiącek, M. Bańda, M. Molenda, Pressure distribution in an assembly of wooden cylinders with various aspect ratios under uniaxial compression, Granular Matter 18 (2) (2016), http://dx.doi.org/10.1007/s10035-016-0617-1.
  • [16] J. Liu, Investigation of the stress–strain relationship of sand, Journal of Terramechanics 32 (5) (1995) 221–230.
  • [17] J. Wiącek, M. Molenda, Effect of particle size distribution on micro- and macromechanical response of granular packings under compression, International Journal of Solids and Structures 51 (2014) 4189–4195.
  • [18] P. Krishna, D. Pandey, Close-packed structures, in: C.A. Taylor (Ed.), International Union of Crystallography Commission on Crystallographic Teaching, First Series Pamphlets, vol. 5, University College Cardiff Press, Cardiff, 1981.
  • [19] R.K. McGeary, Mechanical packing of spherical particles, Journal of the American Ceramic Society 44 (1961) 513–523.
  • [20] P. Jalali, M. Li, Model for estimation of critical packing density in polydisperse hard-disc packings, Physica A 381 (2007) 230–238.
  • [21] J. Sánchez, G. Auvient, B. Cambou, Coordination number and geometric anisotropy in binary sphere mixtures, in: K. Soga, K. Kumar, G. Biscontin, M. Kuo (Eds.), Geomechanics from Micro to Macro, Taylor & Francis Group, London, 2015.
  • [22] S.M.K. Rassolusly, The packing density of 'perfect' binary mixtures, Powder Technology 103 (1999) 145–150.
  • [23] P.V. Lade, C.D. Liggio, J.A. Yamamuro, Effects of NPN-plastic fines on minimum and maximum void ratios of sand, Geotechnical Testing Journal 21 (4) (1998) 336–347.
  • [24] T. Shire, C. O'Sullivan, K. Hanley, The influence of finer fraction and size-ratio on the micro-scale properties of dense bimodal materials, in: K. Soga, K. Kumar, G. Biscontin, M. Kuo (Eds.), Geomechanics from Micro to Macro, Taylor & Francis Group, London, 2015.
  • [25] P.A. Cundall, O.D. Strack, A discrete element model for granular assemblies, Géotechnique 29 (1979) 47–65.
  • [26] EDEM Software, Retrieved from www.dem-solutions.com/ software/edem-software.
  • [27] J. Wiącek, M. Molenda, Representative elementary volume analysis of polydisperse granular packings using discrete element method, Particuology 27 (206) (2015) 88–94.
  • [28] J. Wiącek, Discrete Element Modeling of Quasi-Static Effects in Grain Assemblies, (Dissertation), Institute of Agrophysics PAS, Lublin, Poland, 2008.
  • [29] J. Wiącek, Geometrical parameters of binary granular mixtures with size ratio and volume fraction: experiments and DEM simulations, Granular Matter 18 (2016) 42.
  • [30] Y.C. Chung, Discrete Element Modelling and Experimental Validation of a Granular Solid Subject to Different Loading Conditions, (Dissertation), University of Edinburgh, 2006.
  • [31] L. Olmos, C.L. Martin, D. Bouvard, D. Bellet, M. Di Michiel, Investigation of the sintering of heterogeneous powder systems by synchrotron microtomography and discrete element method, Journal of the American Ceramic Society 92 (2009) 1492–1499.
  • [32] E. Olsson, P.-L. Larsson, A numerical analysis of cold powder compaction based on micromechanical experiments, Powder Technology 243 (2013) 71–78.
  • [33] K. Chen, Granular Materials Under Vibration and Thermal Cycles, (Dissertation), The Pennsylvania State University, 2008.
  • [34] N. Francois, M. Saadatfar, M. Hanifpour, R. Cruikshank, A. Sheppard, Crystallisation in granular material, AIP Conference Proceedings 1542 (2013) 369.
  • [35] Y.C. Chung, J.Y. Ooi, J. Favier, Measurement and modelling of a particulate assembly under confined compression, in: Particulate Systems Analysis Conference, Stratford upon Avon, UK, 2005.
  • [36] K. Odagi, T. Tanaka, K. Yamane, DEM simulation of compression test of particles, in: Proceedings of World Congress on Particle Technology, vol. 4, Sydney, 2002.
  • [37] M. Molenda, M. Stasiak, M. Moya, A. Ramirez, J. Horabik, F. Ayuga, Testing mechanical properties of food powders in two laboratories – degree of consistency of results, International Agrophysics 20 (2006) 37–45.
  • [38] J. Feda, Zaklady mechaniky particularnich latek,(The Principles of Mechanics of Particulate Materials), Academia, Praha, 1977.
  • [39] J.M. Rotter, Guide for the Economic Design of Circular Metal Silos, Spon Press, London/New York, 2001.
  • [40] S. Ding, J.M. Rotter, J.Y. Ooi, G. Enstad, D. Xu, Normal pressures and frictional tractions on shallow conical hopper walls after concentric filling: predictions and experiments, Chemical Engineering Science 89 (2013) 264–272.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de140265-cffe-4a67-becd-63fffd9da001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.