PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Crank-Piston Model of Internal Combustion Engine using CAD/CAM/CAE in the MSC Adams

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the modeling and simulation of the crank-piston model of internal combustion engine. The object of the research was the engine of the vehicle from the B segment. The individual elements of the gasoline engine were digitizing using the process of reverse engineering. After converting the geometry, assembling was imported to MSC Adams software. The crank-piston system was specified by boundary conditions of piston forces applied on the pistons crowns. This force was obtain from the cylinder pressure recorded during the tests, that were carried out on a chassis dynamometer. The simulation studies allowed t determine the load distribution in a dynamic state for the se-lected kinematic pairs.
Rocznik
Strony
51--60
Opis fizyczny
Bibliogr. 20 poz., fig., tab.
Twórcy
autor
  • Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka Street 36, 20-618 Lublin
  • Department of Mechanics and Mechanical Engineering, Faculty of Economic Sciences and Technology, The Pope John Paul II State School Of Higher Education in Biala Podlaska, Sidorska Street 95, 21-500 Biala-Podlaska, Poland
Bibliografia
  • 1. Apanowicz, J. (2002). Metodologia Ogólna. Gdynia: Wydawnictwo Diecezji IV pińskiej „BERNARDINIUM”.
  • 2. Balyakin, V., & Kosenok, B. (2015). Study of the Dynamic Characteristics of a Two-Cylinder Internal Combustion Engine Using Vector Model. Procedia Engineering, 106, 183–191. doi: 10.1016/j.proeng.2015.06.023
  • 3. Basic ADAMS Full Simulation Training Guide (2001). Version 11.0 part number 110viewtr-03. Mechanical Dynamics, Incorporated
  • 4. Biały, M., Wendeker, M., Szlachetka, M., & Magryta, P. (2013). Knocking combustion influence on the load of the piston-crank system using MSC ADAMS software. Combustion Engines, 52(3), 421–427.
  • 5. Bukovan, J., Jakubovicova, L., Sapieta, M., & Sapietova, A. (2017). Analysis and implementation of input load effects on an air compressor piston in MSC.ADAMS. Procedia Engineering, 177, 554-561. doi: 10.1016/j.proeng.2017.02.260
  • 6. Chang, K.-H., (2014). Assembly Modeling. Chapter 4. In Product Design Modeling Using CAD/CAE (pp. 169–232). Boston: Academic Press. doi:10.1016/B978-0-12-398513-2.00004-X
  • 7. Czyż, Z., & Magryta, P. (2016). Analysis of the operating load of foil-air bearings in the gas generator of the turbine engine during the acceleration and deceleration maneuver. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 18(4), 507–513. doi:10.17531/ein.2016.4.5.
  • 8. Czyż, Z., Kayumov, R., & Montusiewicz, J. (2015). Selected methods of making three-dimensional virtual models of museum ceramic objects. Applied Computer Science, 11(1), 51–65.
  • 9. Gmpowertrain. (n.d.). Retrieved February 2, 2017, from Gmpowertrain website http://gmpowertrain.com
  • 10. Hroncová, D., Binda, M., Šargaa, P., & Kicák, F. (2012). Kinematical analysis of crank slider mechanism using MSC Adams/View. Procedia Engineering, 48, 213–222. doi:10.1016/j.proeng.2012.09.507
  • 11. Ionescu, F. (2007). Modelling and simulation in mechatronics. IFAC Proceedings Volumes, 40(18), 301–312. doi:10.3182/20070927-4-RO-3905.00051
  • 12. Kolator, B., & Janulin, M. (2014). Wyznaczanie stanów trakcyjnych pojazdu za pomocą hamowni podwoziowej LPS 3000. Studies & Proceedings of Polish Association for Knowledge Management, 139–150.
  • 13. MSC Software. (n.d.). Retrieved February 2, 2017, from MSC Software website http://www.mscsoftware.com
  • 14. Opel diagnostyka. (n.d.). Retrieved February 2, 2017, from Opel website https://opel2015.wordpress.com
  • 15. Stojanovic, B., & Glisovic, J. (2016). Automotive Engine Materials. In Reference Module in Materials Science and Materials Engineering. Elsevier.
  • 16. Sun, Z., & Zhang, C. (2017). Trajectory-based combustion control for renewable fuels in free piston engines. Applied Energy, 187, 72-83. doi:10.1016/j.apenergy.2016.11.045
  • 17. Tomić, R., Sjerić, M., & Lulić, Z. (2012). The optimization of crankshaft offset of spark ignition engine. Journal of Trends in the Development of Machinery and Associated Technology, 16(1), 211–214.
  • 18. Troncossi, M., Ricci, R., & Rivola A. (2011). Model Reduction of the Flexible Rotating Crankshaft of a Motorcycle Engine Cranktrain. International Journal of Rotating Machinery, 2011, Article ID 143523, 9 pages. doi: 10.1155/2011/143523
  • 19. Wendeker, M., & Czyż, Z. (2016). Analysis of the bearing nodes loads of turbine engine at an unmanned helicopter during a jump up and jump down maneuver. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 18(1), 89–97, doi:10.17531/ein.2016.1.12
  • 20. Zhenga, E., & Zhou, X. (2014). Modeling and simulation of flexible slider-crank mechanism with clearance for a closed high speed press system. Mechanism and Machine Theory, 74, 10-30. doi: 10.1016/j.mechmachtheory.2013.11.015
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de1029ed-9cb8-4586-b1e0-d6259157f1b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.