PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowania bezzałogowych statków powietrznych w przemyśle górniczym: analiza potencjału i wyzwań

Identyfikatory
Warianty tytułu
EN
Applications of unmanned aerial vehicles in the mining industry: an analysis of potential and challenges
Języki publikacji
PL
Abstrakty
PL
Artykuł analizuje rosnące zastosowanie bezzałogowych statków powietrznych (UAV) w przemyśle górniczym, podkreślając ich potencjał w kontekście przetwarzania danych. Technologia UAV staje się coraz bardziej powszechna i dostępna zarówno w krajach rozwiniętych, jak i rozwijających się. W szczególności, małe kopalnie korzystają z UAV, gdzie często brakuje kosztownego sprzętu pomiarowego oraz profesjonalnej wiedzy. W artykule przedstawiono liczne zalety wykorzystania UAV, takie jak niski koszt, elastyczność oraz wysoka precyzja pomiarów, jak również ograniczenia związane z żywotnością baterii i warunkami środowiskowymi. Analizowane są różnorodne zastosowania UAV w geodezji, geologii, geotechnice oraz zarządzaniu kryzysowym, w tym monitorowanie stabilności zboczy, kontrola jakości wody w zbiornikach i identyfikacja obiektów górniczych. Badania dowodzą, że UAV mogą znacznie poprawić efektywność i bezpieczeństwo operacji górniczych, a także przyczynić się do efektywniejszej rekultywacji terenów pokopalnianych. Artykuł podkreśla potrzebę dalszych badań nad optymalizacją technologii UAV w kontekście specyficznych wyzwań związanych z przemysłem górniczym.
EN
The article analyzes the growing use of unmanned aerial vehicles (UAVs) in the mining industry, highlighting their potential in data processing. UAV technology is becoming increasingly common and accessible in both developed and developing countries. In particular, small mines benefit from UAVs, where expensive measuring equipment and professional expertise are often lacking. The article presents numerous advantages of using UAVs, such as low cost, flexibility, and high measurement precision, as well as limitations related to battery life and environmental conditions. Various applications of UAVs in surveying, geology, geotechnics, and crisis management are analyzed, including monitoring slope stability, assessing water quality in reservoirs, and identifying mining sites. Research shows that UAVs can significantly improve the efficiency and safety of mining operations, as well as contribute to more effective reclamation of post-mining areas. The article emphasizes the need for further research on optimizing UAV technology in the context of specific challenges associated with the mining industry.
Rocznik
Tom
Strony
5--15
Opis fizyczny
Bibliogr. 45 poz.
Twórcy
  • KGHM CUPRUM sp. z o.o. - Centrum Badawczo-Rozwojowe, Wrocław
  • KGHM CUPRUM sp. z o.o. - Centrum Badawczo-Rozwojowe, Wrocław
  • KGHM CUPRUM sp. z o.o. - Centrum Badawczo-Rozwojowe, Wrocław
  • KGHM CUPRUM sp. z o.o. - Centrum Badawczo-Rozwojowe, Wrocław
Bibliografia
  • 1. Duda-Mróz N., Koperska W., Stefaniak P., Anufriiev S., Stachowiak M., Stefanek, P. (2023). Application of Dynamic Time Warping to Determine the Shear Wave Velocity from the Down-Hole Test. Applied Sciences, 13(17), 9736.
  • 2. Koperska W., Stachowiak M., Duda-Mróz N., Stefaniak P., Jachnik B., Bursa B., Stefanek P. (2022). The Tailings Storage Facility (TSF) stability monitoring system using advanced big data analytics on the example of the Żelazny Most Facility. Archives of Civil Engineering, 68(2).
  • 3. Koperska W., Stachowiak M., Jachnik B., Stefaniak P., Bursa B., Stefanek P. (2021, January). Machine learning methods in the inclinometers readings anomaly detection issue on the example of tailings storage facility. In IFIP International Workshop on Artificial Intelligence for Knowledge Management, 235-249. Springer International Publishing.
  • 4. https://sec4td.fbk.eu/
  • 5. Bursa B., Stefaniak P., Kakogiannos I. (2023). Applying Model-Based Systems Engineering to Tailings Storage Facility Structures. Materials Proceedings, 15(1), 12.
  • 6. Dang T.M., Nguyen B.D. (2023). Applications of UAVs in mine industry: A scoping review. Journal of Sustainable Mining, 22.
  • 7. Ren H., Zhao Y., Xiao W., Z. (2019). A review of UAV monitoring in mining areas: Current status and future perspectives. International Journal of Coal Science & Technology, 6, 320-333.
  • 8. Kim J., Kim S., Ju C., Son H.I. (2019). Unmanned aerial vehicles in agriculture: A review of perspective of platform, control, and applications. Ieee Access, 7, 105100-105115.
  • 9. Shahmoradi J., Talebi E., Roghanchi P., Hassanalian M. (2020). A comprehensive review of applications of drone technology in the mining industry. Drones, 4(3), 34.
  • 10. Park S., Choi Y. (2020). Applications of unmanned aerial vehicles in mining from exploration to reclamation: A review. Minerals, 10(8), 663.
  • 11. Kršák B., Blišťan P., Pauliková A., Puškárová P., Kovanič Ľ.M., Palková J., Zelizňaková V. (2016). Use of low-cost UAV photogrammetry to analyze the accuracy of a digital elevation model in a case study. Measurement, 91, 276-287.
  • 12. Outay F., Mengash H.A., Adnan M. (2020). Applications of unmanned aerial vehicle (UAV) in road safety, traffic and highway infrastructure management: Recent advances and challenges. Transportation research part A: policy and practice, 141, 116-129.
  • 13. Kanellakis C., Nikolakopoulos G. (2016, June). Evaluation of visual localization systems in underground mining. In 2016 24th Mediterranean Conference on Control and Automation (MED), 539-544. IEEE.
  • 14. Shakhatreh H., Sawalmeh A.H., Al-Fuqaha A., Dou Z., Almaita E., Khalil I., Guizani M. (2019). Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges. Ieee Access, 7, 48572-48634.
  • 15. Singhal G., Bansod B., Mathew L. (2018). Unmanned aerial vehicle classification, applications and challenges: A review.
  • 16. Beretta F., Shibata H., Cordova R., Peroni R.D.L., Azambuja J., Costa J.F.C.L. (2018). Topographic modelling using UAVs compared with traditional survey methods in mining. REM-International Engineering Journal, 71(3), 463-470.
  • 17. Stead D., Donati D., Wolter A., Sturzenegger M. (2019). Application of remote sensing to the investigation of rock slopes: Experience gained, and lessons learned. ISPRS International Journal of Geo-Information, 8(7), 296.
  • 18. Filipova S., Filipov D., Raeva P. (2016, June). Creating 3D model of an open pit quarry by UAV imaging and analysis in GIS. In International conference on cartography and GIS, 6, 652.
  • 19. Kršák B., Blišťan P., Pauliková A., Puškárová P., Kovanič Ľ.M., Palková J., Zelizňaková V. (2016). Use of low-cost UAV photogrammetry to analyze the accuracy of a digital elevation model in a case study. Measurement, 91, 276-287.
  • 20. Xiang J., Chen J., Sofia G., Tian Y., Tarolli P. (2018). Open-pit mine geomorphic changes analysis using multi-temporal UAV survey. Environmental earth sciences, 77, 1-18.
  • 21. Nguyen Q.L., Le Thi T.H., Tong S.S., Kim T.T.H. (2020). UAV photogrammetry-based for open pit coal mine large scale mapping, case studies in Cam Pha City, Vietnam. Устойчивое развитие горных территорий, 12(4), 501-509.
  • 22. Tien Bui D., Long N.Q., Bui X.N., Nguyen V.N., Van Pham C., Van Le C., Kristoffersen B. (2018). Lightweight unmanned aerial vehicle and structure-from-motion photogrammetry for generating digital surface model for open-pit coal mine area and its accuracy assessment. In Advances and Applications in Geospatial Technology and Earth Resources: Proceedings of the International Conference on Geo-Spatial Technologies and Earth Resources 2017, 17-33. Springer International Publishing.
  • 23. Nguyen N.V. (2020). Building DEM for deep open-pit coal mines using DJI Inspire 2. Journal of Mining and Earth Sciences, 61(1), 1-10.
  • 24. Jakob S., Robert Z., Richard G. (2016). Processing of drone-borne hyperspectral data for geological applications. 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), IEEE.
  • 25. Beretta F., Rodrigues A.L., Peroni R.L., Costa J.F.C.L. (2019). Automated lithological classification using UAV and machine learning on an open cast mine. Applied Earth Science, 128(3), 79-88.
  • 26. Madjid M.Y.A., Vandeginste V., Hampson G., Jordan C.J., Booth A.D. (2018). Drones in carbonate geology: Opportunities and challenges, and application in diagenetic dolomite geobody mapping. Marine and Petroleum Geology, 91, 723-734.
  • 27. Kirsch M., Lorenz S., Zimmermann R., Tusa L., Möckel R., Hödl P., Gloaguen, R. (2018). Integration of terrestrial and drone-borne hyperspectral and photogrammetric sensing methods for exploration mapping and mining monitoring. Remote Sensing, 10(9), 1366.
  • 28. Jakob S., Zimmermann R., Gloaguen R. (2017). The need for accurate geometric and radiometric corrections of drone-borne hyperspectral data for mineral exploration: Mephysto – A toolbox for pre-processing drone-borne hyperspectral data. Remote Sensing, 9(1), 88.
  • 29. Lyons-Baral J., Kemeny J. (2016). Applications of point cloud technology in geomechanical characterization, analysis and predictive modeling. Mining Engineering, 68(5), 18-29.
  • 30. Raj P. (2019). Use of Drones in an Underground Mine for Geotechnical Monitoring (Master's thesis, The University of Arizona).
  • 31. Turner R.M., Bhagwat N.P., Galayda L.J., Knoll C.S., Russell E.A., MacLaughlin M.M. (2018, June). Geotechnical characterization of underground mine excavations from UAV-captured photogrammetric & thermal imagery. In ARMA US Rock Mechanics/Geomechanics Symposium (ARMA-2018). ARMA.
  • 32. Lyu M., Zhao Y., Huang C., Huang H. (2023). Unmanned aerial vehicles for search and rescue: A survey. Remote Sensing, 15(13), 3266.
  • 33. Daud S.M.S.M., Yusof M.Y.P.M., Heo C.C., Khoo L.S., Singh M.K.C., Mahmood M.S., Nawawi H. (2022). Applications of drone in disaster management: A scoping review. Science & Justice, 62(1), 30-42.
  • 34. Agarwal R., Singh D., Chauhan D.S., Singh K.P. (2006). Detection of coal mine fires in the Jharia coal field using NOAA/AVHRR data. Journal of Geophysics and engineering, 3(3), 212-218.
  • 35. Dunnington L., Nakagawa M. (2017). Fast and safe gas detection from underground coal fire by drone fly over. Environmental Pollution, 229, 139-145.
  • 36. Bamford T., Esmaeili K., Schoellig A.P. (2016). A real-time analysis of rock fragmentation using UAV technology. arXiv preprint arXiv:1607.04243.
  • 37. Bamford T., Esmaeili K., Schoellig A.P. (2017). Aerial rock fragmentation analysis in low-light condition using UAV technology. arXiv preprint arXiv:1708.06343.
  • 38. Freire G.R., Cota R.F. (2017, October). Capture of images in inaccessible areas in an underground mine using an unmanned aerial vehicle. In UMT 2017: Proceedings of the First International Conference on Underground Mining Technology. Australian Centre for Geomechanics.
  • 39. Castendyk D.N., Straight B.J., Voorhis J.C., Somogyi M.K., Jepson W.E., Kucera B.L. (2019, September). Using aerial drones to select sample depths in pit lakes. In Mine closure, 2019: Proceedings of the 13th international conference on mine closure, 1113-1126. Australian Centre for Geomechanics.
  • 40. Padró J.C., Carabassa V., Balagué J., Brotons L., Alcañiz J.M., Pons X. (2019). Monitoring opencast mine restorations using Unmanned Aerial System (UAS) imagery. Science of the Total Environment, 657, 1602-1614.
  • 41. Jackisch R., Lorenz S., Zimmermann R., Möckel R., Gloaguen R. (2018). Drone-borne hyperspectral monitoring of acid mine drainage: An example from the Sokolov lignite district. Remote sensing, 10(3), 385.
  • 42. Walter C.A., Braun A., Fotopoulos G. High-Resolution UAV Magnetometry Surveys for Localizing Legacy/Abandoned Wells.
  • 43. Chirico P.G., DeWitt J.D. (2017). Mapping informal small-scale mining features in a data-sparse tropical environment with a small UAS. Journal of Unmanned Vehicle Systems, 5(3), 69-91.
  • 44. Martin P.G., Payton O.D., Fardoulis J.S., Richards D.A., Scott T.B. (2015). The use of unmanned aerial systems for the mapping of legacy uranium mines. Journal of environmental radioactivity, 143, 135-140.
  • 45. Monografia KGHM. (1996). Polska Miedź SA. Piestrzyński A. et al.(red.), Cuprum, Wrocław.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de0fca63-a1b0-4f73-b1fa-d2cddf195e51
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.