
Zezwala się na korzystanie z artykułu na warunkach 
licencji Creative Commons Uznanie autorstwa 3.0

1. Introduction

Extremal problems play an increasing role in applications of 
control theory [20]. Despite a great variety of these problems, 
they can be converted by a unified functional-analytic fra-
mework, first suggested by Dubovicki and Milutin.

In 1962 Dubovicki and Milutin found a necessary condition 
for an extremum in the form of an equation set down in the 
language of functional analysis. They were able to derive, as 
special cases of this condition, almost all previously known 
necessary extremum conditions and thus to recover the lost 
theoretical unity of the calculus of variations.

In particular, in the paper [6], the Dubovicki-Milutin 
approach was adopted for solving optimal control problems 
for parabolic-hyperbolic systems. The existence and uni-
queness of solutions of such parabolic-hyperbolic systems 
with the Dirichlet boundary conditions are discussed. Using 
the Dubovicki-Milutin framework, the necessary and suffi-
cient conditions of optimality for the Dirichlet problem with 
the quadratic performance indexes and constrained control 
are derived.

In the papers [9–13], the Dubovicki-Milutin approach was 
used for solving boundary optimal control problems for the 
case of time lag parabolic equations [9] and for the case 
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of parabolic equations involving time-varying lags [10, 11], 
multiple time-varying lags [12], and integral time lags [13] 
respectively.

The sufficient conditions for the existence of a unique solu-
tion of such parabolic equations [9–13] are presented. Such 
equations with deviating arguments are a well-known mathe-
matical tool for representing many physical phenomena. 

Consequently, in the papers [9–13], the linear quadra-
tic problems of parabolic systems with time lags given in 
various forms (constant time lags [9], time-varying lags [10, 
11], multiple time-varying lags [12], integral time lags [13], 
etc.) were solved.

Extremal problems for integral time lag infinite order para-
bolic systems are investigated. The purpose of this paper 
is to show the use of the Dubovicki-Milutin theorem [11] in 
solving optimal control problems for distributed parabolic 
systems. 

As an example, an optimal boundary control problem for 
a system described by a linear infinite order partial diffe-
rential equation of parabolic type in which integral time 
lag appears in the Neumann boundary condition is consi-
dered. Such equation constitutes in a linear approximation 
universal mathematical model for many diffusion processes 
(e.g., modeling and control of heat transfer processes). The 
right-hand side of this equation and the initial condition 
are not continuous functions usually, but they are measu-
rable functions belonging to L2 or L∞ spaces. Therefore, 
the solution of this equation is given in a certain Sobolev 
space [17]. The performance indexes have the quadratic form. 
Finally, we impose some constraints on the boundary con-
trol. Using the Dubovicki-Milutin theorem, the necessary 
and sufficient conditions of optimality with the quadratic 
performance indexes and constrained control are derived for 
the Neumann problem.
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2. Preliminares

Let Ω be a bounded set of Rn with smooth boundary Γ.
We define the infinite order Sobolev space H ∞{a

a
, 2}(Ω) 

of functions Φ(x) defined on Ω [1, 2] as follows
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where C ∞(Ω) is a space of infinite differentiable functions, a
a
 ≥ 0  

is a numerical sequence and ‖·‖2 is a norm in the space L2(Ω), 
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where a = (a1, …, an) is a multi-index for differentiation, 
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The space H –∞{a

a
, 2}(Ω) [1, 2] is defined as the formal con-

jugate space to the space H ∞{a
a
, 2}(Ω), namely
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The duality pairing of the spaces H ∞{a
a
, 2}(Ω) and H –∞{a

a
, 2}(Ω)  

is postulated by the formula

	
	 (4)

where   

From above, H ∞{a
a
, 2}(Ω) is everywhere dense in L2(Ω) with 

topological inclusion and H  –∞{a
a
, 2}(Ω) denoted the topolog-

ical dual space with respect to L2(Ω) so we have the follow-
ing chain

	

3.	 Problem Formulation. Optimality 
Conditions 

Now we formulate the control problem for the system descri-
bed by the following parabolic equation:

              
( ) ( ) ( ), 0,y A t y u x t T

t
∂ + = ∈Ω ×
∂
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where Ω has the same properties as Section 2. 
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h is an integral time lag such that ( ), ,h a b∈  Ψ0 is an initial 
function defined on Σ0.

The parabolic operator ( )A t
t

∂ +
∂

 in the state equation (1) 
 
satisfies the hypothesis of Lions and Magenes [17] and A(t) is  
given by

	
and

	
	 (9)

is an infinite order elliptic partial differential operator [3].
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where: 
A

y
γ
∂

∂
 is a normal derivative at Γ, directed towards the  

 
exterior of Ω, cos(n, xi) is an i-th direction cosine of n, n-being 
the normal at Γ exterior to Ω and

	
( ) ( ) ( ), , ,

b

a
q x t y x t h dh v x t= − +∫ 	 (11)

Now we shall present the sufficient conditions for the exi-
stence of a unique solution of the mixed initial-boundary value 
problem (5)–(8) for the case where the boundary control 

( )2 .v L∈ Σ  For this purpose we introduce the Sobolev space 
H ∞,1(Q) ([17], vol. 2, p. 6) defined by

	 	 (12)

which is the Hilbert space normed by

	 	
(13)

where the space H  1(0,T; H  0(Ω)) is defined in Chapter 1 of 
[17], vol. 1, respectively.

The existence of a unique solution for the mixed initial-
-boundary value problem (5)–(8) on the cylinder Q can be 
proved using a constructive method, i.e., first, solving (5)–(8) 
on the subcylinder Q1 and in turn on Q2, etc. until the proce-
dure covers the whole cylinder Q. In this way the solution in 
the previous step determines the next one. 

Then the following result is fulfilled [15]:

Theorem 1: Let y0, Ψ0, v, and u be given with  
 

 ( )2
0 0 ,LΨ ∈ Σ  ( )2v L∈ Σ  and  

Then, there exists a unique solution  for the 
mixed initial-boundary value problem (5)–(8). Moreover, 

 for j = 1, …, K.

In the sequel, we shall fix 

In this paper we shall consider the optimal boundary control 
problem i.e., ( )2 .v L∈ Σ

Let us denote by  the space of states and by 
( )2U L∈ Σ  the space of controls. The time horizon T is fixed 

in our problem. 
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The performance index is given by

	
	 (14)

where li ≥ 0 and l1 + l2 > 0; zd is a given element in ( )2L Q  
and N is a strictly positive linear operator on ( )2L Σ  into 

( )2 .L Σ

From the Theorem 1 [15] it follows that for any adv U∈  the 
cost function (14) is well-defined since  
We assume the following constraints on control: adv U∈  is a clo-
sed, convex set with non-empty interior, a subset of U. (15).

The optimal control problem (5)–(8), (14), (15) will be 
solved as the optimization one in which the function u is the 
unknown function.

Taking advantage of the Dubovicki-Milutin theorem [11] we 
shall derive the necessary and sufficient conditions of optima-
lity for the optimization problem (5)–(8), (14), (15).

The solution of the stated optimal control problem is equ-
ivalent to seeking a pair  which 
satisfies the equation (5)–(8) and minimizing the performance 
index (14) with the constraints on control (15).

We formulate the necessary and sufficient conditions of the 
optimality in the form of Theorem 2.

Theorem 2: The solution of the optimization problem (5)–(8) 
exists and it is unique with the assumptions mentioned above; 
the necessary and sufficient conditions of the optimality are 
characterized by the following system of partial differential 
equations and inequalities: 

State equation

 

(16)

Adjoint equations

    	

	 (17)

Maximum condition

	
	 (18)

Moreover

	
()

	 (19)

Outline of the proof
Due to the Dubovicki-Milutin theorem [11], we approximate 
the set representing the inequality constraints by the regular 
admissible cone (RAC), the equality constraint by the regular 
tangent cone (RTC), and the performance index by the regular 
improvement cone (RFC).

a)  Analysis of the equality constraint
The set Q1 representing the equality constraint has the form

	

	 (20)

We construct the regular tangent cone (RTC) of the set Q1 
using the Lusternik theorem (Theorem 9.1 [5]). For this pur-
pose, we define the operator P in the form

	

	
	

		

(21)

The operator P is the mapping from the space 
( ) ( )¢H Q L∞ × Σ  into the space

	

The Fréchet differential of the operator P can be written in 
the following from:

	

	 	

(22)

In fact, 
t

∂
∂

 (Theorem 2.8 [18]), A(t) (Theorem 2.1 [16]) and 
 

Aγ
∂

∂
 (Theorem 2.1 [17]) are linear and bounded mappings. 

By virtue of the Theorem 1 [15], we can prove that P’ is 
the operator “one to one” from the space  onto 

Considering that the assumptions of Lusternik’s theorem are 
fulfilled, we can write down the regular tangent cone (RTC) 
for the set  in a point ( )0 0,y v  in the form

	
( )( ) ( ) ( )( ){ }0 0 0 0

1, , , ; , , 0RTC Q y v y v E P y v y v= ∈ =′ 	 (23)

where the cone (23) is the subspace (Theorem 9.1 [5]). 

Therefore, using Theorem 10.1 [5] we know the form of the 
functional belonging to the adjoint cone

	
( ) ( ) ( )( )0 0

1 1, 0 , , ,f y v y v RTC Q y v= ∀ ∈ 	 (24)
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b) Analysis of the constraint on controls
The set Q2 = Y × Uad representing the inequality constra-

ints is a closed and convex one with non-empty interior in the 
space E. 

By virtue of Theorem 10.5 [5] we find the functional belon-
ging to the adjoint regular admissible cone (RAC), i.e.

	
( ) ( )( )0 0

2 2, , ,f y v RAC Q y v
∗

 ∈  

We notice that if E1, E2 are two linear topological spaces, 
then the adjoint space to E = E1 × E2 has the form

	 ( ){ }1 2 1 1 2 2, ; ,E f f f f E f E∗ ∗ ∗= = ∈ ∈
and
	 f(x) = f1(x1) + f2(x2)

So we note the functional ( )2 ,f y v  as follows

	 ( ) ( ) ( )2 1 2,f y v f y f v′ ′= +  	 (25)
where

( )1 0f y y Y′ = ∀ ∈  (Theorem 10.1 [5]), 
( )2f v′  is a support functional to the set Uad in a point v0 

(Theorem 10.5 [5]).

c) Analysis of the performance functional
Taking advantage of Theorem 7.5 [5], we find the regular 

improvement cone (RFC) of the performance index (14)

	
( )( ) ( ) ( )( ){ }0 0 0 0, , , ; , , 0RFC I y v y v E I y v y v= ∈ <′ 	 (26)

where: ( )( )0 0, ,I y v y v′  is the Fréchet differential of the perfor-
mance index (14) and it can be written as

On the basis of Theorem 10.2 [5] we find the functional 
belonging to the adjoint regular improvement cone (RFC), 
which has the form

	
	 (27)

where: l0 > 0.

d) Analysis of Euler-Lagrange’s equation
The Euler-Lagrange equation for our optimization problem 

has the form

	

3

1
0i

i
f

=

=∑ 	 (28)

Let p(x,t) be the solution of (14) for (y0, v0).
Let us denote by y  the solution of ( ), 0P y v =′  for any fixed .v  

Then taking into account (24), (25) and (27) we can 
express (28) in the form

	 (29)

	

We transform the first component of the right-hand side of 
(29) introducing the adjoint variable by adjoint equations (17). 

After transformations we get

	
	 (30)

Substituting (30) into (29) gives

 

	
	 (31)

Using the definition of the support functional [5] and dividing 
both members of the obtained inequality by λ0, we finally get

	
	 (32)

The last inequality is equivalent to the maximum condi-
tion (18).

In order to prove the sufficiency of the derived conditions of 
the optimality, we use the fact that constraints and the per-
formance index are convex and that the Slater’s condition is 
satisfied (Theorem 15.3 [5]). In fact, there exists a point 
( ) 2, inty v Q∈   such that ( ) 1, .y v Q∈   This fact follows immedia-
tely from the existence of non-empty interior of the set Q2 and 
from the existence of the solution of the equation (5)–(8) as 
well. The uniqueness of the optimal control follows from the 
strict convexity of the performance index (14). 

The above remarks complete the proof of Theorem 2.
One may also consider the similar optimal control problem 

with the performance index

	
	 (33)

where zΣd is a given element in ( )2L Σ .

From the Theorem 1 [15] and the trace theorem [17] for each 
( )2 ,v L∈ Σ  there exists a unique solution  with 

 Thus ( )ˆ ,I y v  is well-defined. Then the solution of 
the formulated optimal control problem is equivalent to seeking 
a pair   which satisfies the equation 
(5)–(8) and minimizing the cost function (33) with the con-
straints on control (15). 

We can prove the following theorem:

Theorem 3: The solution of the optimization problem (5)–(8), 
(33), (15) exists and it is unique with the assumptions men-
tioned above; the necessary and sufficient conditions of the 
optimality are characterized by the following system of partial 
differential equations and inequalities:

State equation (16)
Adjoint equations

		  (34)
Maximum condition

	
	 (35)

The idea of the proof of the Theorem 3 is the same as in the 
case of the Theorem 2.
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In the case of performance indexes (14) and (33) with  
λ1 > 0 and λ2 = 0, the optimal control problem reduces to the 
minimizing of the functional on a closed and convex subset in 
a Hilbert space. Then, the optimization problem is equivalent 
to a quadratic programming one [7, 8, 14] which can be solved 
by the use of the well-known algorithms, e.g., Gilbert’s [4, 7, 
8, 14] ones. The practical application of Gilbert’s algorithm to 
optimal control problem for a parabolic system with boundary 
condition involving a time lag is presented in [14]. Using the 
Gilbert’s algorithm, a one-dimensional numerical example of 
the plasma control process is solved [14]. 

 

4. Final Remarks

The derived conditions of the optimality (Theorems 2 and 3) 
are original from the point of view of application of the Dubo-
vicki-Milutin theorem [11] in solving optimal control problems 
for infinite order parabolic systems in which integral time 
lags appear in the Neumann boundary conditions. The proved 
optimization results (Theorems 2 and 3) constitute a novelty 
of the paper with respect to the references [7, 8, 14] concer-
ning application of the Lions framework [16] for solving linear 
quadratic problems of optimal control for the case of the Neu-
mann problem. The results presented in the paper can be 
treated as a generalization of the results obtained in [9–13] 
to the case of integral time lags appearing in the Neumann 
boundary conditions. 

The obtained optimization theorems (Theorems 2 and 3) 
demand the assumption dealing with the non-empty interior 
of the set Q2 representing the inequality constraints. Therefore, 
we approximate the set Q2 by the regular admissible cone 
(RAC) (if intQ2 = f then this cone does not exist) [11]. The 
obtained results can be reinforced by omitting the assumption 
concerning the non-empty interior of the set Q2 and utilizing 
the fact that the equality constraints in the form of the para-
bolic equations are “decoupling”. The optimal control problem 
reduces to seeking 0

2v Q∈ ′  and minimizing the performance 
index I(v). Then, we approximate the set 2Q′  representing the 
inequality constraints by the regular tangent cone (RTC), and 
for the performance index I(v) we construct the regular impro-
vement cone (RFC) [11].

The proposed methodology based on the Dubovicki-Milutin 
approach can be presented on a specific case study concerning 
hyperbolic systems described by infinite order partial differen-
tial equations of the hyperbolic type in which time lags appear 
in the integral form both in the state equations and in the 
Neumann boundary conditions. 

Moreover, the Dubovicki-Milutin framework can be applied 
to solving optimization problems for a sophisticated case of 
infinite order parabolic systems with deviating arguments given 
in the integral form such that ( )0,h b∈  with a = 0.

Another direction of research would be the analysis of case 
studies with numerical examples concerning the determination 
of optimal boundary control with constraints for infinite order 
parabolic systems with integral time lags.

An interesting possible future research direction may consist 
in formulation of extremal problems for advanced modern con-
trol strategies, for example, event-based control [19].

Acknowledgments
Adam Kowalewski was supported under the research program 
no. 16.16.120.773 at AGH University of Science and Tech-
nology, Krakow, Poland. Marek Miśkowicz was supported 
by the Polish National Center of Science under Grant DEC-
-2018/31/B/ST7/03874.

References

1.	 Dubinskii Ju.A., Sobolev spaces of infinite order and behavior 
of solution of some boundary value problems with unbounded 
increase of the order of the equation, “Matiematiczeskii 
Sbornik”, Vol. 98, 1975, 163–184.

2.	 Dubinskii Ju.A., Non-trivality of Sobolev spaces of infinite 
order for a full Euclidean space and a Tour’s, “Matiematicze-
skii Sbornik”, Vol. 100, 1976, 436–446.

3.	 Dubinskii Ju.A., About one method for solving partial differ-
ential equations, “Doklady Akademii Nauk SSSR”, Vol. 258, 
1981, 780–784.

4.	 Gilbert E.S., An iterative procedure for computing the maxi-
mum of a quadratic form on a convex set, “SIAM Journal on 
Control”, Vol. 4, No. 1, 1966, 61–80, DOI: 10.1137/0304007.

5.	 Girsanov I.V., Lectures on Mathematical Theory of Extremum 
Problems, Publishing House of the University of Moscow, Mos-
cow 1970 (in Russian).

6.	 Kowalewski A., On optimal control problem for parabolic-hyper-
bolic systems, “Problems of Control and Information Theory”, 
Vol. 15, 1986, 349–359.

7.	 Kowalewski A., Optimization of parabolic systems with deviating 
arguments, “International Journal of Control”, Vol. 72, No. 11, 
1999, 947–959, DOI: 10.1080/002071799220498.

8.	 Kowalewski A., Optimal Control of Infinite Dimensional Dis-
tributed Parameter Systems with Delays, AGH University of 
Science and Technology Press, Cracow, 2001.

9.	 Kowalewski A., Miśkowicz M., Extremal problems for time lag 
parabolic systems, Proceedings of 21st International Conference 
on Process Control (PC), 446–451, Strbske Pleso, Slovakia, June 
6-9, 2017, DOI: 10.1109/PC.2017.7976255.

10.	Kowalewski A., Extremal problems distributed parabolic systems 
with boundary conditions involving time-varying lags, Proceed-
ings of 22nd International Conference on Methods and Models 
in Automation and Robotics (MMAR), 447–452, Międzyzdroje, 
Poland, August 28–31, 2017.

11.	Kowalewski A., Extremal problems for parabolic systems with 
time-varying lags, “Archives of Control Sciences”, Vol. 28, 
No. 1, 2018, 89–104, DOI: 10.24425/119078

12.	Kowalewski A., Extremal problems distributed parabolic systems 
with multiple time-varying lags, Proceedings of 23rd Interna-
tional Conference on Methods and Models in Automation and 
Robotics (MMAR), 791–796, Międzyzdroje, Poland, August 
27-30, 2018.

13.	Kowalewski A., Miśkowicz M., Extremal problems for integral 
time lag parabolic systems, Proceedings of 24th International 
Conference on Methods and Models in Automation and Robot-
ics (MMAR), 7–12, Międzyzdroje, Poland, August 26–29, 2019.

14.	Kowalewski A., Duda J., On some optimal control problem 
for a parabolic system with boundary condition involving 
a time-varying lag, “IMA Journal of Mathematical Control 
and Information”, Vol. 9, No. 2, 1992, 131–146, 
DOI: 10.1093/imamci/9.2.131.

15.	Kowalewski A., Krakowiak A., Time-optimal boundary control 
of an infinite order parabolic system with time lags, “Interna-
tional Journal of Applied Mathematics and Computer Science”, 
Vol. 18, No. 2, 2008, 189–198.

16.	Lions J.L., Optimal Control of Systems Governed by Partial 
Differential Equations, Springer-Verlag, Berlin-Heidelberg, 1971.

17.	Lions J.L., Magenes E., Non-Homogeneous Boundary Value 
Problems and Applications, Vols 1 and 2, Springer-Verlag, Ber-
lin-Heidelberg, 1972. 

18.	Maslov V.P., Operators Methods, “Nauka”, Moscow 1973 
(in Russian).

19.	Miśkowicz M. (Ed.), Event-Based Control and Signal Process-
ing, CRC Press, 2016.

20.	Ioffe A.D., Tihomirov V.M., Theory of Extremal Problems, 
Elsevier, 2009.

41

Adam Kowalewski, Marek Miśkowicz



Streszczenie: Zaprezentowano ekstremalne problemy dla systemów parabolicznych nieskończonego 
rzędu z całkowymi opóźnieniami czasowymi. Rozwiązano problem optymalnego sterowania brzegowego 
dla systemów parabolicznych nieskończonego rzędu, w których całkowe opóźnienia czasowe występują 
w warunkach brzegowych Neumanna. Tego rodzaju równania stanowią w liniowym przybliżeniu 
uniwersalny model matematyczny dla procesów dyfuzyjnych. Korzystając z metody Dubowickiego-Milutina 
wyprowadzono warunki konieczne i wystarczające optymalności dla problemu liniowo-kwadratowego.

Słowa kluczowe: sterowanie brzegowe, systemy paraboliczne nieskończonego rzędu, całkowe opóźnienia czasowe

Problemy ekstremalne dla parabolicznych systemów 
nieskończonego rzędu z warunkami brzegowymi, w których 
występują całkowe opóźnienia czasowe
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