PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamical system of optical soliton parameters for anti-cubic and generalized anti-cubic nonlinearities with super-Gaussian and super-sech pulses

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The parameter dynamics of solitons, propagating through optical fibers, is emerged from the usage of variational principle. The anti-cubic nonlinearity and its generalized version are studied. This study reveals that the center position does not affect the dynamics of different parameters and only soliton power and linear momentum are conserved quantities.
Czasopismo
Rocznik
Strony
117--128
Opis fizyczny
Bibliogr. 30 poz., tab.
Twórcy
  • Institute of Mathematical and Physical Science, University of Abomey-Calavi, Bénin
autor
  • Faculty of Science and Technology, University of Abomey-Calavi, Bénin
  • International Chair of Mathematical Physics and Application, Bénin
autor
  • Department of Physics, Chemistry and Mathematics, Alabama A&M University, Normal, AL 35762–4900, USA
  • Mathematical Modeling and Applied Computation (MMAC) Research Group, Department of Mathematics, King Abdulaziz University, Jeddah–21589, Saudi Arabia
  • Department of Applied Mathematics, National Research Nuclear University, 31 Kashirskoe Hwy, Moscow–115409, Russian Federation
  • Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Medunsa–0204, Pretoria, South Africa
autor
  • School of Electronics and Information Engineering, Wuhan Donghu University, Wuhan–430212, People’s Republic of China
  • Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, King Abdulaziz University, Jeddah–21589, Saudi Arabia
  • Department of Mathematics, Faculty of Arts and Sciences, Near East University, 99138 Nicosia, Cyprus
autor
  • Department of Physics, Chemistry and Mathematics, Alabama A&M University, Normal, AL 35762–4900, USA
  • Mathematical Modeling and Applied Computation (MMAC) Research Group, Department of Mathematics, King Abdulaziz University, Jeddah–21589, Saudi Arabia
  • Science Program, Texas A&M University at Qatar, PO Box 23874, Doha, Qatar
Bibliografia
  • [1] AGRAWAL G.P., Nonlinear Fiber Optics, Academic Press, San Diego, CA, USA, 2003.
  • [2] BISWAS A., SONMEZOGLU A., EKICI M., ALSHOMRANI A.S., BELIC M., Optical solitons with Kudryashov’s equation by F-expansion, Optik 199, 2019, article 163338, DOI: 10.1016/j.ijleo.2019.163338.
  • [3] BISWAS A., EKICI M., SONMEZOGLU A., ALSHOMRANI A., BELIC M., Optical solitons with Kudryashov’s equation by extended trial function, Optik 202, 2020, article 163290, DOI: 10.1016/j.ijleo.2019.163290.
  • [4] AYELA A., EDAH G., ELLOH C., DJOSSOU G., Super-sech soliton dynamics in optical metamaterials with generally parabolic law of nonlinearity using Lagrangian variational method, Physical Science International Journal 21(3), 2019, pp. 1–9, DOI: 10.9734/psij/2019/v21i330109.
  • [5] AYELA A.M., EDAH G., BISWAS A., EKICI M., ALZAHRANI A.K., BELIC M.R., Chirped super-Gaussian and super-sech pulse parameter dynamics with DWDM topology by variational principle, Optik 206, 2020, article 164344, DOI: 10.1016/j.ijleo.2020.164344.
  • [6] SHWETANSHUMALA S., Bistable bright optical spatial solitons due to charge drift and diffusion of various orders in photovoltaic photorefractive media under closed-circuit conditions, Zeitschrift für Naturforschung A 71(2), 2016, pp. 175–184, DOI: 10.1515/zna-2015-0409.
  • [7] ANDERSON D., LISAK M., BERNTSON A., A variational approach to nonlinear evolution equations in optics, Pramana 57(5–6), 2001, pp. 917–936, DOI: 10.1007/s12043-001-0006-z.
  • [8] BISWAS A., EKICI M., SONMEZOGLU A., ZHOU Q., ALSHOMRANI A.S., MOSHOKOA S.P., BELIC M., Solitons in optical metamaterials with anti-cubic nonlinearity, The European Physical Journal Plus 133(5), 2018, article 204, DOI: 10.1140/epjp/i2018-12046-6.
  • [9] BISWAS A., KONAR S., Introduction to non-Kerr Law Optical Solitons, CRC Press, Boca Raton, FL, USA, 2006.
  • [10] EKICI M., SONMEZOGLU A., ZHOU Q., MOSHOKOA S.P., ULLAH M.Z., ARNOUS A.H., BISWAS A., BELIC M., Analysis of optical solitons in nonlinear negative-indexed materials with anti-cubic nonlinearity, Optical and Quantum Electronics 50(2), 2018, article 75, DOI: 10.1007/s11082-018-1341-3.
  • [11] FUJIOKA J., CORTES E., PEREZ-PASCUAL R., RODRÍGUEZ R.F., ESPINOSA A., MALOMED B.A., Chaotic solitons in the quadratic-cubic nonlinear Schrödinger equation under nonlinearity management, Chaos 21(3), 2011, article 033120, DOI: 10.1063/1.3629985.
  • [12] SAHA M., SARMA A.K., Modulation instability in nonlinear metamaterials induced by cubic–quintic nonlinearities and higher order dispersive effects, Optics Communications 291, 2013, pp. 321–325, DOI: 10.1016/j.optcom.2012.11.011.
  • [13] ZHOU Q., ZHU Q., LIU Y., BISWAS A., BHRAWY A.H., KHAN K.R., MAHMOOD M.F., BELIC M., Soliton in optical metamaterials with parabolic law nonlinearity and spatio-temporal dispersion, Journal of Optoelectronics and Advanced Materials 16(11–12), 2014, pp. 1221–1225.
  • [14] BISWAS A., JAWAD A.J.M., ZHOU Q., Resonant optical solitons with anti-cubic nonlinearity, Optik 157, 2018, pp. 525–531, DOI: 10.1016/j.ijleo.2017.11.125.
  • [15] FOROUTAN M., MANAFIAN J., RANJBARAN A., Solitons in optical metamaterials with anti-cubic law of nonlinearity by ETEM and IGEM, Journal of the European Optical Society-Rapid Publications 14, 2018, article 16, DOI: 10.1186/s41476-018-0084-x.
  • [16] BISWAS A., YASAR E., YILDIRIM Y., TRIKI H., ZHOU Q., MOSHOKOA S.P., BELIC M., Conservation laws for perturbed solitons in optical metamaterials, Results in Physics 8, 2018, pp. 898–902, DOI: 10.1016/j.rinp.2017.12.068.
  • [17] BISWAS A., Conservations laws for optical solitons with anti-cubic and generalized anti-cubic nonlinearities, Optik 176, 2019, pp. 198–201, DOI: 10.1016/j.ijleo.2018.09.074.
  • [18] MOUBISSI A.B., NAKKEERAN K., DINDA P.T., KOFANE T.C., Non-Lagrangian collective variable approach for optical soliton in fibers, Journal of Physics A 34(1), 2001, pp. 129–136, DOI: 10.1088/0305-4470/34/1/310.
  • [19] GREEN P., MILOVIC D., SARMA A.K., LOTT D.A., BISWAS A., Dynamics of super-sech solitons in optical fibers, Journal of Nonlinear Optical Physics & Materials 19(2), 2010, pp. 339–370, DOI: 10.1142/S0218863510005145.
  • [20] BISWAS A., Dispersion-managed solitons in optical fibers, Journal of Optics A 4(1), 2002, pp. 84–97, DOI: 10.1088/1464-4258/4/1/315.
  • [21] HOSSEINI K., MATINFAR M., MIRZAZADEH M., Soliton solutions of high-order nonlinear Schrödinger equations with different laws of nonlinearities, Regular and Chaotic Dynamics 26(1), 2021, pp. 105–112, DOI: 10.1134/S1560354721010068.
  • [22] KUDRYASHOV N.A., Highly dispersive optical solitons of an equation with arbitrary refractive index, Regular and Chaotic Dynamics 25(6), 2020, pp. 537–543, DOI: 10.1134/S1560354720060039.
  • [23] KUDRYASHOV N.A., Solitary waves of the non-local Schrödinger equation with arbitrary refractive index, Optik 231, 2021, article 166443, DOI: 10.1016/j.ijleo.2021.166443.
  • [24] KUDRYASHOV N.A., SAFONOVA D.V., Painlevé analysis and traveling wave solutions of the fourthorder differential equation for pulse with non-local nonlinearity, Optik 227, 2021, article 166019, DOI: 10.1016/j.ijleo.2020.166019.
  • [25] KUDRYASHOV N.A., Almost general solution of the reduced higher-order nonlinear Schrödinger equation, Optik 230, 2021, article 166347, DOI: 10.1016/j.ijleo.2021.166347.
  • [26] KUDRYASHOV N.A., Solitary waves of the generalized Sasa–Satsuma equation with arbitrary refractive index, Optik 232, 2021, article 166540, DOI: 10.1016/j.ijleo.2021.166540.
  • [27] KUDRYASHOV N.A., Optical solitons of mathematical model with arbitrary refractive index, Optik 224, 2020, article 165391, DOI: 10.1016/j.ijleo.2020.165391.
  • [28] KUDRYASHOV N.A., Optical solitons of model with integrable equation for wave packet envelope, Chaos, Solitons & Fractals 141, 2020, article 110325, DOI: 10.1016/j.chaos.2020.110325.
  • [29] KUDRYASHOV N.A., Optical solitons of the model with arbitrary refractive index, Optik 224, 2020, article 165767, DOI: 10.1016/j.ijleo.2020.165767.
  • [30] KUDRYASHOV N.A., Highly dispersive optical solitons of equation with various polynomial nonlinearity law, Chaos, Solitons & Fractals 140, 2020, article 110202, DOI: 10.1016/j.chaos.2020.110202.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de0de497-9b8e-4bb7-8942-55dee4da2990
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.