
Reconfigurable General-purpose Processor
Idea Overview

Igor Zarzycki

Abstract—This paper presents the idea of the reconfigurable
general-purpose processor implemented as dynamically recon-
figurable FPGA (called “reconfigurable processor” in the rest
of this document). Propesed solution is compared with currently
available general-purpose processors performing instructions
sequentially (called “sequential processors” in the rest of this
paper). This document presents the idea of such reconfigurable
processor and its operation without going into implementation
details and technological limitations.

The main novelty of reconfigurable processor lays in lack
of typical for other processors sequential execution of instruc-
tions. All operations (if only possible) are executed in parallel,
in hardware also at subistruction level. Solution proposed in this
paper should give speed up and lower power consumption in com-
parison with other processors currently available. Additionally
proposed architecture does not requires neither any modifications
in source codes of already existing, portable programs nor any
changes in development process. All of the changes can be
performed by compiler at the stage of compilation.

Index Terms—processor; FPGA; dynamic reconfiguration; re-
configurable computing paradigm

I. STATE OF THE ART

A. Sequential processors

S INCE few years there was no large breakthrough in

performance of sequential processors. Such approach to

processor architecture appears to reach its limits. The maximal

frequency of their clocks is at the level of about 3GHz and

stopped increasing. The overall improvement in performance

is gained by minor changes in architecture (like size extension

of branch prediction tables), enlarging cash memory or by

increasing the number of cores.

Unfortunately the performance improvement causes in-

crease of power consumption. For example Opteron 6386 SE1

(released on 5th of November 2012) made in 32nm technology

is having 16 cores with 2.8GHz clock rate, 16MB of L3

memory (2 * 8MB) and 140W of TDP (Thermal Design

Power). Opteron 62741 (released on 14th of November 2011)

made also in 32nm technology similarly with 16 cores and

the the same amount of L3 cash memory but working with

2.2GHz and having 115W of TDP. Comparison of those two

processors produced by AMD shows that power consumption

increased about 30% (within one year of development).

Currently (November 2012) the fastest supercomputer (Titan

located at Oak Ridge National Laboratory) is using 18688

Opteron 6274 processors and achieved 17590.0 TFlop/s of

I. Zarzycki is with Department of Microelectronics and Computer Science
(DMCS), Lodz University of Technology, Łódź, Poland (e-mail: izarzy-
cki@dmcs.pl)

computation power (theoretical peak 27112.5 TFlop/s) and

over 8MW of power consumption2.

In sequential processors there is no possibility for paral-

lel execution within single core (excluding Hyper-Threading

Technology by Intel where one physical core may behave as

two virtual processors - each of them with sequential processor

limitations). Hence the need to increase the number of cores.

Dual-core and multi-core processors are constantly enlarging

their market share. Even many single-core processors are

produced as dual-core (or generally multi-core) ones with

one (or more) of the cores not active. Similar trend can be

observed even for mobile devices market although low power

consumption is crucial in their case while modern architectures

are constantly increasing it.

B. Computation accelerators

To increase the performance computation accelerators of-

fering massively parallel execution are being used. However

they are mainly based on sequential processors possessing ex-

tremely large number of cores and hence providing massively

parallel execution of calculations.

For example currently (November 2012) the fastest super-

computer is using 18688 Tesla K20X computation accelerators

(one per each CPU processor)2. Tesla K20X computation1

accelerator is having GK110 sequential processor with 2688

cores working at the frequency of 732MHz. Its maximal power

consumption (including memory and other elements of board)

is 235W. To justify such enormous power consumption Tesla

K20X is supposed to provide1 maximally 1.31 TFlop/s of

computation power using double precision and 3.95 TFlop/s

at single precision calculations.

Unfortunately computation accelerators such as mentioned

Tesla K20X are requiring software to be written in special

way enabling usage of their abilities. Hopefully such software

often can run without computation acceleration on normal

sequential processor. Therefor programs using OpenCL or

other APIs (Application Programming Interfaces) allowing

usage of computation accelerators are being more and more

popular.

C. Software requirements

Used software is constantly increasing its demands on

computation power. Not only because of higher complexity

of problems being solved but unfortunately often also because

1Data taken from manufacturer’s data shits.
2Data taken from TOP500 list (November 2012).

������������	
�����	 ��
�����	��������� ��� ��
����� �������� ��	� �� ��� �� ���� ��

�������	
 � �
�� �� �����
���
 �� ���������
������ � �����
�� �������� �� ! "��#����
� �� $��	������

of not optimal code. To increase software efficiency currently

there is trend for parallel execution.

Many tasks like graphical computations, database operations

or scientific computations can be divided into large number of

sub tasks being independent on each other and hence being

suitable for parallel execution. Modern compilers are capable

to create programs to be in total or partially executed by

arbitrary number of threads. This approach urges us to increase

abilities of parallel execution.

D. Reconfigurable devices

On the other hand reconfigurable devices are commonly

used for specialized ([1]) or scientific calculations ([2]), often

as coprocessors ([3]). Reconfigurable hardware can be easily

adapted to fulfill nearly any application demands by changing

its functionality.

Additionally often some of the sequential processors archi-

tectures are being simulated in hardware of reconfigurable

devices. This allows to test and switch between different

architectures choosing the most suitable one for particular

problem being solved and find optimal solution without need

of physical implementation of all available solutions. This

maybe implemented already at the stage of prototyping.

Hence dynamic reconfiguration (during run of the device)

is supported in commercially available FPGAs (Field Pro-

grammable Gate Arrays - most common reconfigurable device

type), several different concepts for usage them as acceleration

of computations have appeared ([3]). Firstly used as stand-

alone coprocessors, later (thanks to technology development)

were equipped witch sequential processors cores combined

with reconfigurable resources.

Moreover reconfigurable devices can operate as SIMP (Sin-

gle Instruction Multiple Data) devices as described in [1] or

[2]. Such approach significantly increase the parallelism of

execution and hence improve performance. Another advan-

tage of reconfigurable devices in comparison with sequential

processors is low power consumption per operation.

E. Reconfigurable computing paradigm

Reconfigurable computing is computing paradigm that fills

the gap between software and hardware. In [4] there is

presented a Unix-like system, slightly modified to run on

PowerPC core being part of Virtex. This allows program-

mers to treat tasks implemented in hardware in the same

way as processes being run by sequential processor core.

However creating new software requires low-level approach

being far from modern programming trends. Even software

being portable for other platforms can not be simply ported

and requires to be rewritten. All this being far from modern

approach to software creation strongly reduces usefulness

of this solution and hence stops its development.

Since reconfigurable devices requiring description in some

HDL (Hardware Description Language) are becoming more

and more commonly used there have been created compilers

being able to compile some common programming languages

describing software to HDLs. For example compilation of C to

Verilog. However such compilers are strongly limited because

currently available reconfigurable devices are not supposed

to work as non sequential processors. Because of that such

elements of language like pointers are not supported. Those

solutions assume rather compilation of simple functions de-

scribing elements like hash algorithms, scientific calculations

or coding/decoding simple formats. There is no possibility for

them to compile whole programs. Lack of compilers is a huge

limitation for reconfigurable computing paradigm disabling its

development.

F. The purpose to create reconfigurable processor

The aim presented in this paper is to create processor that

could be used as general purpose one and would provide all

benefits of reconfigurable computing. It should be conceptually

compatible (not necessarily with particular type of socket or

similar physical elements cause those parameters are varying

even among sequential processors) with modern computers

and operating systems architectures. Such processor could be

used as CPU, GPU or other type of processor in computers or

mobile devices to increase their performance and hence satisfy

growing requirements put by software.

Additionally thanks to lower power consumption of recon-

figurable devices with comparison to sequential processors,

reconfigurable processor would be a good solution for mobile

devices. Mainly because for them low power consumption

is crucial parameter. High performance achieved thanks to

massively parallel execution is another important advantage

making reconfigurable processor a perfect, widely applicable

solution.

II. GENERAL DESCRIPTION OF IDEA

A. Lack of sequential computing

Although ASIPs (Application Specific Instruction set Pro-

cessors) are currently being actively researched, reconfigurable

processor described in this paper is assumed to operate as

general purpose one. Hence it should be able to perform any

kind of application not only some of them solving only on

some particular problems. Additionally there is assumed no

sequential instruction processing hence there should be no se-

quential processor core implemented internally nor simulation

of such in hardware.

Reconfigurable processor should be implemented as partic-

ular kind of FPGA. Such FPGA should be able to operate as

typical processor. This means reading or writing data from

address, responding to hardware interrupts, etc. The only

exception from traditional sequential processor operation is

that reconfigurable one is taking bitsreams instead of instruc-

tions. Such approach would make it compatible with currently

available computers and operating systems architectures and

hence make it usable.

B. Partitions

The concept is to generate partitions solving particular,

simple tasks from which program is composed and switch

them in the run-time if needed. Such partitions should be

responsible for solving program or in most cases its parts.

�� ��������� ������� ���!	� �����	"������� ��������� ���� �������#

Programs should be divided into several partitions. This is

because complexity of average program make it unable to be

solved within single partition.

Partitions should be loaded on demand or when their exe-

cution is approaching. Of course during compilation often it

can not be clearly predicted which partitions should follow the

active one and there are more candidates than one. In such case

it may be useful to load all candidates (if it is only possible)

before one will be selected. If loading all candidates is not

possible, one (or some of them) should be selected according

to some brunch prediction mechanism (or other mechanism

making the decision). Such approach is supposed to load next

partition during the execution of the previous one and hence

to hide the time necessary for configuration.

Division into partition changes the program from a list of

instructions to graph of partitions responsible for performing

its parts. This concept of working applies also to such elements

as operating system, drivers, shared libraries or software inter-

rupt handlers. Under those conditions reconfigurable processor

can be considered as Extreme RISC (Reduced Instruction

Set Computing) processor being able to perform only one

instruction — load and execute partition.

C. Large parallelism

This approach enables not only parallel execution of large

number of threads but also huge parallelism of operations

within single thread if only there are no dependencies between

them. This may give speed up even if compared with massively

parallel sequential processors currently available like modern

GPGPUs (General Purpose Graphic Processing Units) or other

computation accelerators being able to perform hundreds or

even thousands of operations in parallel.

In proposed concept the only limitation of the number

of partitions being independently executed in parallel is the

amount of resources. The reasonable amount would be about

thousands of cells from which partitions may be composed.

D. Configuration time hiding

The execution of program can be divided to configura-

tion and execution of its partitions. For traditional sequen-

tial processors configuration time does not exist hence only

execution time determines their performance. In dynamically

reconfigurable processor time spent on configuration have also

influence on performance and should be hidden to maximally

reduce the latency between executions of partitions.

The main approach to hide configuration time is to configure

one partition when other is being executed. However in such

case configuration time should be lower or at least of the same

order as execution time.

Currently available FPGAs are equipped with complex cells

requiring several kilobits for configuration. Although each cell

has high flexibility its configuration is far longer than execu-

tion of partitions. Despite that flexibility, a large part of cell

functionality would not be used extending only the amount of

data necessary to configure cell, enlonging configuration time.

According to initial estimations in currently available FPGAs

configuration would be from about 10 to 100 times longer than

execution.

Because of that in architecture of reconfigurable processor

proposed in this paper the amount of data necessary to con-

figure single cell should be strongly reduced and be of order

of tens to one hundred bits. Although average partition would

use larger number of cells the total time required for its

configuration should be on average lower than time spent on

execution. In worst case configuration time is of the same

order as execution time.

This approach should not increase execution time. Mainly

because although average partition is composed of larger

number of cell, cell is smaller and hence physical size of

partition remains similar. Average register to register delay

may remain similar or even smaller thanks to smaller fan-out.

Register to register delays may be considered as the only ones

influenting partition operation clock and due to it the execution

time.

E. Partitions management

At the moment when particular partition ended its operation

and is no longer necessary its resources should be possible to

be utilised by other partitions. Of course it may be useful

for some partitions to remain after end of their calculations.

Small partitions such as loop bodies or some others frequently

executed in program should remain after end of one their

execution, so they could be rerun with only minimal configura-

tion. Such approach may strongly reduce overall time spent by

program on configuration without execution of any partitions.

To manage the partitions control unit is necessary. Control

unit should be able to load partitions and provide basic control.

Configuration, freezing/resorting partitions as well as receiv-

ing basic signals (like end of operation) must be provided.

Advanced partitions management may enlarge and slow down

control unit which is crucial for whole circuit. Because of

that such advanced logic like finding out if particular partition

should remain and not be utilised after end of its operation,

should be determined by the compiler during compilation stage

not by the control unit.

More advanced partition management algorithms including

such elements like branch prediction mechanisms or others

may also strongly influence the overall performance. Extend-

ing control unit may increase performance without lose of

backward compatibility. However this should be empirically

checked.

F. Memory accessing

Partitions themselves should not be directly responsible for

memory accessing. There should be separate unit (later in

this document called “memory accessing unit”) responsible

for this task taking into account memory virtualization and

other aspects. The partition provides data or place for data,

address, control bits and calls for memory access. Control bits

are responsible for representing access type (read or write),

amount of data (word, byte etc.) and signalising data being

ready. Memory accessing unit receives call and provides access

according to access type control flag. After a successful data

������������	
�����	 ��
�����	��������� ��� ��
����� �������� ��	� �� ��� �� ���� �$

read or write data ready this flag should be down. It signalise

for partition that data was written or read and automatically

does not mark another fake call for memory access. In case

of all access types rising data ready control flag by partition

generates call for memory access.

Each memory call should be processed in parallel to others

by several independent subunits hence one call do not have to

wait for another to be processed. Otherwise achieved paral-

lel execution within partitions could be spoiled be memory

accessing unit. Additionally memory accessing unit should

work with higher frequency than average partition. This unit

performance is important for all partitions. Hence it is realised

by dedicated circuit, it can operate faster than any partition.

This allows to maximally reduce time necessary to process

memory access algorithm and hence partition waiting time.

During configuration of the partition additional data is

sent to memory accessing unit. This data contains detailed

information like which cell may call memory access (to avoid

fake calls), detailed access type (like direct, indirect or others),

priority of the call and more.

G. Floating point calculations

Floating point calculations are crucial for different type

of operations like scientific calculations, graphic processing,

gaming or similar. Often speed of their execution is being

considered as measure of performance. There for efficient

implementation of those operation is important and can not

be neglected.

Implementing floating point calculations in software within

partitions would make them very large, complex and slow.

Equipping cells with floating point units would significantly

enlarge cell and hence spoil the performance. Because of

that there should be several FPUs (Floating Point Units)

working independently in parallel to each other. FPUs should

be separate from cell matrix. Each partition would be able

to call their functions via memory accessing unit or similar

mechanism. This solution allows for fast and simple floating

points operations without huge, complex partitions and without

additional communication mechanisms extending size of cell.

The call for floating point operation could be received by

simple manager sending it to free FPU. Although there would

be additional manager, because of its low complexity it would

not take much space nor consumes large amount of power. It

also would be able to work with high speed and hence to be

transparent for communication between partitions and FPUs.

Of course partition may implement floating point operation

realised in software and not be forced to use FPUs.

H. Overall gain

Thanks to better adaptation to solved problem and higher

parallelism than in traditional sequential processors, gained

speed-up should significantly reduce execution time and hence

increase the performance even including configuration time

that was not possible to be hidden.

Additionally reconfigurable processor in comparison with

sequential one should have lower power consumption. Even

including additional elements, the overall power consumption

at maximal work load should be still lower than for currently

available solutions. Combining high performance with low

power consumption can make the reconfigurable processor

perfect solution especially for mobile devices.

III. HARDWARE PROBLEMS AND SOLUTIONS

A. Cell architecture

Modern FPGAs often assumes that bitwise operations are

dominating. This is proper approach when building any kind

of state machines used by control logic. However programs

mostly perform arithmetic calculations and operate on whole

words rather than single bits.

Additionally, currently available FPGAs try to give maximal

flexibility. This approach significantly extends the physical

size of cell and makes their configuration far more complex

than it should be. Complex configuration gives long con-

figuration time, that may be hard or even impossible to be

hidden, especially with larger number of partitions following

the one being currently executed. This may significantly spoil

the performance.

Those are some of the problems forcing new FPGA archi-

tecture to be created for purpose of reconfigurable processor.

Each cell should be designed to mostly operate on words, but

also to be able to operate on single bits for partition control

logic. Each cell may contain more complex dedicated elements

like multipliers or similar however this may enlarge cell and as

it was mentioned spoil the overall performance of processor.

Additionally this may make cell configuration time not short

enough.

Since cell size and functionality should be strongly reduced

in comparison with currently available FPGAs there should

be possibility to place thousands of cells in reconfigurable

processor and hence to create far more complex partitions.

Additionally, despite partitions using more cells, configuration

time of average partition should become far shorter mainly

because of smaller amount of configuration data.

B. Amount of configuration data

Cell used only for routing the internal signals for partition

requires smallest amount of configuration data. Cells being

more complex elements of their partition may require more

data to be configured. However even in worst case the amount

of this data should be not larger than one or two hundreds bits.

Average cells in partition should require amount configuration

data being in between the minimal and maximal one — tens

to hundred bits.

Average partition composed of larger number of cells may

require several kilobits of total configuration data. In such case

average configuration time should be similar to execution time.

Dividing program to small partitions should simplify them and

hence make them require less configuration time and operate

with higher clock frequency. Additionally smaller partitions

may be placed in cell matrix in higher number increasing

the parallelism of execution. This should give higher overall

performance.

�� ��������� ������� ���!	� �����	"������� ��������� ���� �������#

C. Clock trees

To obtain maximal performance from each partition its clock

frequency should be adapted to it. Of course whole processor

could operate with the same low frequency so even slow

complex partitions would be able to operate properly. However

such solution would force all partitions to operate with the

speed of the slowest one. Such approach would seriously spoil

the performance.

Because of that each partition should have possibility to

choose best clock frequency for its needs. However this

requires a number of clock frequencies to be available for

partition to be chosen. The more the better. However placing

large number of clock trees would significantly enlarge the

whole circuit. Additionally designing the circuit with large

number of clock trees would be a difficult task.

Since partition configuration does not have to consider

signal flow within the one being configured it have possibility

to be performed with far higher clock frequency than partition

execution clock. Additionally configuration clock frequency

does not depend on partition but on cell architecture and hence

is constant. During configuration cells may operate according

to configuration clock and when partition is ready they should

switch to receive partition execution clock signal.

D. Word size

Many sequential processors are operating using word being

32 or 64 bits long. Similar assumption should be made of

reconfigurable processor. Although single cell is operating on

words of particular length, partition may operate on words

having nearly any length. This may be simply achieved thanks

to adaptation possibility.

Thanks to this possibility some specific, complex calcula-

tions on huge numbers that currently have to be performed in

software could be fully implemented within single partition.

Hence those calculations can be executed with far lower

amount of clock cycles and in shorter time. This should

strongly increase performance of applications operating on

huge numbers like coding/decoding signals, cryptography and

similar ([3]).

IV. SOFTWARE PROBLEMS AND SOLUTIONS

A. Compiler

One of the most crucial element for reconfigurable processor

is possibility to create of new programs efficiently. Addi-

tionally simple porting of already portable programs is also

necessary. Creation of processor without software is pointless

and need to rewrite all programs from the very beginning

would make reconfigurable processor useless. Difficult way

of software creation would also make proposed solution not

very useful and hence stop its future development.

Because of that there is need to create new compiler or

extend some of currently available ones. Such compiler should

be able to compile any high level programming language being

used and compile it either to any HDL or better directly to bit-

stream (since HDL also should be later translated to bitstrem).

To maximally simplify porting and creation of software popu-

lar programming languages should be supported. However the

larger number of supported programming languages the better.

One of the best possible solution would be creation of back-

end to some commonly used compilers like GCC. Mainly

because there are many existing front-ends to them trans-

lating programming languages into their internal languages.

Additionally popular compilers are well performing language

dependent optimisations and are constantly being updated.

B. Available solutions

Currently there are several projects of compilers [5][6] being

able to compile popular programming languages like C++ to

popular HDLs like Verilog. However all of them are strongly

limited and hence are unable to perform full conversion. This

makes them useless for reconfigurable processor.

Additionally all those solutions would require compilation

of HDL to bitstreem suitable for this processor. As described

in [7] this would be a non trivial task of similar complexity

as compilation of programming languages. And since recon-

figurable processor is supposed to operate as general-purpose

one, compilation from programming language to HDL and

then to bitstream (even if possible) would be not optimal.

Hence there is need for compiler compiling programming

languages directly to bitstream. Creating such compiler from

the very beginning would significantly reduce the number of

supported programming languages. Additionally in existing

compilers there are optimisations that are also useful for

project reconfigurable processor like dead code elimination or

others. Because of that some already existing compilers with

available source code like LLVM or GCC should be modified

to be able to support bitstream of reconfigurable processor as

one of possible outputs. This would require adding another

back-end and several architecture specific optimisations per-

formed on internal representation of code being compiled.

Since architecture of reconfigurable processor should be

adapted to operate as typical one with precisely defined

elements like memory accessing or partitions switching there

should be no difficulty with compilation of internal code

representation to bitstream. This should allow for compilation

of any programming language supported by chosen compiler

front-ends.

C. Architecture specific optimisations

Compiler for processor presented in this paper should

analyse the code to perform architecture specific optimisations.

Each basic operation can be expressed as number of bitstream

templates. The choice of particular one should be base on

several parameters. For example particular operation may

be computed often and hence use larger number of cells

to perform in shorter time or may be computed once in

longer time but should not waste resources. Even combining

operations requires analyse of where to place the input and

output registers. Additionally such elements as access priority

also should be considered during optimisation.

In general in reconfigurable processor operations may be

executed in parallel if only there are no dependencies making

������������	
�����	 ��
�����	��������� ��� ��
����� �������� ��	� �� ��� �� ���� ��

it impossible. However usage of the resources has also to

be considered because of large but limited amount of them.

In some cases lose of performance caused by huge size of

partition may spoil the gain of parallel execution. In such

case elements responsible for those operations should be

reordered not to produce long signal paths. If this still can not

solve the problem then sequential execution of some of the

operations should be considered. Additionally in worst case

there may appear the situation in which there is not enough of

resources to perform all of the operations in parallel. However

reconfigurable processor is designed for massively parallel

execution of programs and hence such situations should be

rare.
Another important optimisation is reduction of dependen-

cies between operations. This may significantly increase paral-

lelism of program and hence increase performance. Hopefully

some optimisations for increasing the parallelism of execution

are already available in compilers. Even if the will not be

suitable for this project, they can be considered as base for

specific optimisation.
Because partitions switching mechanism is one of the most

complex element and the one that has large influence on

overall performance, switching of the partitions should also

be minimized. Some of the partitions (for example the ones

being bodies of loops or calls to frequently used functions)

are executed frequently. In their case it may be not efficient

to remove them at the moment they end their execution just

to load them soon. Such partitions may be frozen after one of

their execution just to be slightly reconfigured or just read

from memory new parameters and rerun when needed. Of

course such solution does not release the resources. Hence this

optimisation should depend not only on the frequency of usage

of partition, but also on its size. Large partitions staying idle

will only consume resources (mainly space on cell matrix) that

could be utilised by other partitions other partitions.
Unfortunately all mentioned architecture specific optimisa-

tion will require additional empirical research. Because of that

no details about them can be currently known. Hence now

they can be discussed only as general concept of what will be

required from compiler.

D. Operating system
Another important software problem is operating system.

There is extremely large variety of available ones and recon-

figurable processor should be conceptually compatible with

them. However existing systems may be not well suited for

reconfigurable processor and hence require to be modified

or extended. Similarly to compiler’s architecture specific op-

timisations mentioned before, currently (without empirical

research) no details can be found. Additionally the need

for neither extension nor modification of currently available

operating systems may not be certain. However, since the

novelty of this project puts high demands on software, such

need has to be taken into account.

V. SUMMARY

This paper briefly presents the concept of dynamically

reconfigurable general-purpose processor realised as dynam-

ically reconfigurable FPGA. The main novelty of proposed

solution is lack of sequential execution being typical for cur-

rently available processors. Additionally presented solutions

implement all the operations in hardware.

To fulfill those assumptions there is need to create new

architecture being different from both currently available FP-

GAs and sequential processors. Additionally there is necessary

dedicated compiler being able to compile source code directly

to suitable bitsreaem in optimal way, not to spoil performance

and to fulfill high demands put on the software. To create such

there is need for additional, empirical research that can not be

performed currently.

REFERENCES

[1] H. V. J. M. Moreno, A. Villa, A. Napieralski, G. Sassatelli, and
E. Lavarec, “Perplexus: Pervasive computing framework for model-
ing complex virtually-unbounded systems,” Proceedings of the 2007
NASA/ESA Conference on Adaptive Hardware and Systems, pp. 587–591,
Aug. 2007.

[2] L. Zhuo and V. K. Prasanna, “Scalable and modular algorithms for
floating-point matrix multiplication on reconfigurable computing sys-
tems,” IEEE Transactions on Parallel and Distributed Systems, vol. 18,
pp. 433–448, Apr. 2007.

[3] M. H. Tarek El-Ghazawi, Esam El-Araby, K. Gaj, V. Kindratenko, and
D. Buell, “The promise of high-performance reconfigurable computing,”
Computer, vol. 41, pp. 69–76, Feb. 2008.

[4] A. T. Hayden Kwok-Hay So and R. Brodersen, “A unified hard-
ware/software runtime environment for fpga-based reconfigurable com-
puters using borph,” in Proceedings of the 4th International Conference
on Hardware/Software Codesign and System Synthesis, 2006, pp. 259–
264.

[5] Y. D. Y. Arcilio J. Virginia and K. L. Bertels, “An empirical comparison of
ansi-c to vhdl compilers: Spark, roccc and dwarv,” ProRISC, 18th Annual
Workshop on Circuits, System and Signal Processing, Utreht 2007, pp.
388–394, Nov. 2007.

[6] D. Jain, “Object oriented programming constructs in vhsic hardware
description language ‘why & how’,” Journal of Theoretical and Applied
Information Technology, vol. 3, pp. 30–37, Jan. 2007.

[7] F. W. Wibowo, “Interoperability of reconfiguring system on fpga using a
design entry of hardware description language,” Proceedings of Interna-
tional Conference on Advances in Computing, Control, and Telecommu-
nication Technologies 2011, vol. 2, pp. 79–83, Mar. 2011.

Igor Zarzycki recieved the MSc degree in the
field of Computer Science at Lodz University of
Technology in 2010. He continues his education as a
PhD student at Department of Microelectronics and
Computer Science. His interests include software
developement and compiler construction. His recent
research concerns compilation of software descrip-
tion languages to hardware description ones.

�� ��������� ������� ���!	� �����	"������� ��������� ���� �������#

