PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of variation of the parameters method for micropolar flow in a porous channel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work devoted to study the injective micropolar flow in a porous channel. The flow is driven by suction or injection on the channel walls, and the micropolar model is used to characterize the working fluid. The governing nonlinear partial differential equations are reduced to the nonlinear ordinary coupled differential equations by using Berman’s similarity transformation. These equations are solved for large mass transfer via variation of parameters method (VPM) which has been used effectively in the solution of nonlinear equations recently. This method has not previously been applied to a problem of micropolar flow. The results of the variation of parameters method are found to be in excellent agreement with the results of the Matlab bvp4c solver (NUM). With this validity, the effects of the some important parameters on the velocity and rotation profile of micropolar flow are discussed in detail. It can be seen that increases in the values N1 and N3 have different results in comparison with N2 increasing.
Rocznik
Strony
17--29
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Technical Scientific Vocational School, Bayburt University Bayburt, Turkey
  • Faculty of Engineering, Ataturk University Erzurum, Turkey
Bibliografia
  • [1] Eringen, A. (1966). Theory of micropolar fluids. Indiana University Mathematics Journal, 16(1), 1-18.
  • [2] Zaib, A., Haq, R.U., Sheikholeslami, M., & Khan, U. (2020). Numerical analysis of effective Prandtl model on mixed convection flow of γAl2O3–H2O nanoliquids with micropolar liquid driven through wedge. Physica Scripta, 95(3), (2020), 035005.
  • [3] Zaib, A., Haq, R.U., Chamkha, A.J., & Rashidi, M.M. (2019). Impact of partial slip on mixed convective flow towards a Riga plate comprising micropolar TiO2-kerosene/water nanoparticles. International Journal of Numerical Methods for Heat & Fluid Flow, 29(5), 1647-1662.
  • [4] Lukaszewicz, G. (1999). Micropolar Fluids: Theory and Applications. Basel: Birkhauser.
  • [5] Berman, A.S. (1953). Laminar flow in a channel with porous walls. Journal of Applied Physics, 24, 1232-1235.
  • [6] Yuan, S.W. (1956). Further investigation of laminar flow in channels with porous walls. Journal of Applied Physics, 27, 267-269.
  • [7] Robinson, W.A. (1976). The existence of multiple solutions for the laminar flow in a uniformly porous channel with suction at both walls. Journal of Engineering Mathematics, 10(1), 23-40.
  • [8] Zaturska, M.B., Drazin, P.G., & Banks, W.H.H. (1988). On the flow of a viscous fluid driven along a channel by suction at porous walls. Fluid Dynamics Research, 4, 151-178.
  • [9] Joneidi, A.A., Ganji, D.D., & Babaelahi, M. (2009). Micropolar flow in a porous channel with high mass transfer. International Communications in Heat and Mass Transfer, 36(10), 1082-1088.
  • [10] Hassan, H., & Rashidi, M.M. (2014). An analytic solution of micropolar flow in a porous channel with mass injection using homotopy analysis method. International Journal of Numerical Methods for Heat and Fluid Flow, 24(2), 419-437.
  • [11] Abdulaziz, O., Noor, N.F.M., & Hashim, I. (2009). Homotopy analysis method for fully developed MHD micropolar fluid flow between vertical porous plates. International Journal for Numerical Methods in Engineering, 78, 817-827.
  • [12] Ziabakhsh, Z., & Domairry, G. (2008). Homotopy analysis solution of micro-polar flow in a porous channel with high mass transfer. Adv. Theor. Appl. Mech., 1(2), 79-94.
  • [13] Shakeri Aski, F., Nasirkhani, S.J., Mohammadian, E., & Asgari, A. (2014). Application of Adomian decomposition method for micropolar flow in a porous channel. Propulsion and Power Research, 3(1), 15-21.
  • [14] Mosayebidorcheh, S. (2014). Analytical investigation of the micropolar flow through a porous channel with changing walls. Journal of Molecular Liquids, 196, 113-119.
  • [15] Si, X., Zheng, L., Lin, P., Zhang, X., & Zhang, Y. (2013). Flow and heat transfer of a micropolar fluid in a porous channel with expanding or contracting walls. International Journal of Heat and Mass Transfer, 67, 885-895.
  • [16] Sheikholeslami, M., Hatami, M., & Ganji, D.D. (2014). Micropolar fluid flow and heat transfer in a permeable channel using analytical method. Journal of Molecular Liquids, 194, 30-36.
  • [17] Cao, L., Si, X., & Zheng, L. (2015). The flow of a micropolar fluid through a porous expanding channel: A Lie group analysis. Applied Mathematics and Computation, 270, 242-250.
  • [18] Cengel, Y.A., & Palm, W.J. (2012). Differential Equations for Engineers and Scientists. New York: McGraw Hill.
  • [19] Mohyud-din, S.T. (2013). Variation of parameters method for nonlinear diffusion equations. International Journal of Modern Applied Physics, 3(1), 48-56.
  • [20] Rahmatullah, & Mohyud-Din, S.T. (2013). Variation of parameters method for nonlinear diffusion equations. International Journal of Modern Applied Physics, 3(1), 48-56.
  • [21] Moore, T.J. (2014). Application of Variation of Parameters to Solve Nonlinear Multimode Heat Transfer Problems. Ph.D. Thesis, Brigham Young University.
  • [22] Moore, T.J., & Jones, M.R. (2014). Analysis of the conduction-radiation problem in absorbing, emitting, non-gray planar media using an exact method. Int. J. Heat and Mass Transf., 73, 804-809.
  • [23] Arslanturk, C. (2016). Isıl parametreleri sıcaklıkla değişen iğne kanatların, parametrelerin değişimi yontemi ile performans analizi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22(4), 246-252.
  • [24] Arslanturk, C. (2018). Variation of parameters method for optimizing annular fins with variable thermal properties. Pamukkale University Journal of Engineering Sciences, 24(1), 1-7.
  • [25] Arslanturk, C. (2018). Optimization of space radiators accounting for variable thermal conductivity and base-to-fin radiation interaction. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 232(1), 121-130.
  • [26] Gungor, O., & Arslanturk, C. (2019). Variation of parameters method for a three-dimensional problem of condensation film on an inclined rotating disk. Journal of Applied Mathematics and Computational Mechanics, 18(1), 15-28.
  • [27] Rashidi, M.M., Laraqi, N., & Basiri Parsa, A. (2011). Analytical modeling of heat convection in magnetized micropolar fluid by using modified differential transform method. Heat Transfer-Asian Research, 40(3), 187-204.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de0ab018-ca8c-497c-91c0-d5bb0b19563a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.