PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of uv laser texturization on hydrophobic and anti-icing properties of waterborne polyurethane nanocomposite coatings

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Reducing ice buildup on different aerodynamic surfaces like airplane wings or wind turbine blades caused by the impact of supercooled water droplets can be achieved by creating surfaces featuring anti-icing capabilities. Hydrophobic surfaces are particularly promising due to their water-repelling attributes. In recent years, advancements in short-pulsed laser technolo gies have provided an efficient method for altering material surface properties. However, the effectiveness of such surfaces in preventing ice accumulation has yet to be validated. This study introduces a UV laser texturization approach for polymer sur faces. Laser patterning was employed to create periodic surface structures on the modified polyurethane coatings. The study investigated the influence of different laser parameters like pulse frequency, laser speed or pattern shape on the topographical features, hydrophobicity, and anti-icing properties of the resulting surfaces. Surface topography characterization was per formed using scanning electron microscopy (SEM) and an optical profilometer. The wettability parameters, including the stat ic contact angle and contact angle hysteresis, were measured to assess the impact of the wetting behavior and laser parameters on the materials under investigation. The anti-icing properties were evaluated by means of freezing delay time tests. The find ings indicate that the laser texturization of waterborne polyurethane coatings enhances the hydrophobic and anti-icing prop erties of the investigated materials.
Rocznik
Strony
213--219
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Technology Partners Foundation,ul. Bitwy Warszawskiej 1920 r. 7A, 02-366 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, ul. Woloska 141, 02-507 Warsaw, Poland
  • Technology Partners Foundation,ul. Bitwy Warszawskiej 1920 r. 7A, 02-366 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, ul. Woloska 141, 02-507 Warsaw, Poland
  • Technology Partners Foundation,ul. Bitwy Warszawskiej 1920 r. 7A, 02-366 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, ul. Woloska 141, 02-507 Warsaw, Poland
autor
  • Technology Partners Foundation,ul. Bitwy Warszawskiej 1920 r. 7A, 02-366 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, ul. Woloska 141, 02-507 Warsaw, Poland
  • SINTEF Industry, Department of Materials and Nanotechnology, Forskningsveien 1, 0373 Oslo, Norway
autor
  • SINTEF Industry, Department of Process Technology, Forskningsveien 1, 0373 Oslo, Norway
  • Technology Partners Foundation,ul. Bitwy Warszawskiej 1920 r. 7A, 02-366 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, ul. Woloska 141, 02-507 Warsaw, Poland
Bibliografia
  • [1] Zeng Q., Zhou H., Huang J., Guo Z., Review on the recent development of durable superhydrophobic materials for practical applications, Nanoscale 2021, 13(27), 11734- -11764, DOI: 10.1039/D1NR01936H.
  • [2] Momen G., Jafari R., Farzaneh M., Ice repellency behaviour of superhydrophobic surfaces: Effects of atmospheric icing conditions and surface roughness, Appl. Surf. Sci., 2015, 349, 211-218, DOI: 10.1016/J.APSUSC.2015.04.180.
  • [3] Wang Y., Zhang J., Dodiuk H. et al., The reduction in ice adhesion using controlled topography superhydrophobic coatings, J. Coatings Technol. Res., Published online 2022, October, 18, 1-15, DOI: 10.1007/S11998-022-00682-2/ METRICS.
  • [4] Bai Y., Zhang H., Shao Y., Zhang H., Zhu J., Recent progresses of superhydrophobic coatings in different application fields: An overview, Coatings 2021, 11(2), 116, DOI: 10.3390/COATINGS11020116.
  • [5] Cao Y., Tan W., Wu Z., Aircraft icing: An ongoing threat to aviation safety, Aerosp. Sci. Technol. 2018, 75, 353-385, DOI: 10.1016/J.AST.2017.12.028.
  • [6] Caliskan F., Hajiyev C., A review of in-flight detection and identification of aircraft icing and reconfigurable control, Prog. Aerosp. Sci. 2013, 60, 12-34, DOI: 10.1016/ J.PAEROSCI.2012.11.001.
  • [7] Rasmussen R., Wade C., Hage F. et al., New ground deicing hazard associated with freezing drizzle ingestion by jet engines, J. Aircr. 2006, 43(5), 1448-1457, DOI: 10.2514/ 1.20799.
  • [8] Su Q., Chang S., Zhao Y., Zheng H., Dang C., A review of loop heat pipes for aircraft anti-icing applications, Appl. Therm. Eng. 2018, 130, 528-540, DOI: 10.1016/ J.APPLTHERMALENG.2017.11.030.
  • [9] Cao Y., Wu Z., Su Y., Xu Z., Aircraft flight characteristics in icing conditions, Prog. Aerosp. Sci. 2015, 74, 62-80, DOI: 10.1016/J.PAEROSCI.2014.12.001
  • [10] Yang T., Gao F., Bozhko S., Wheeler P., Power Electronic Systems for Aircraft, In: Control of Power Electronic Convertes and Systems, Vol. 2, Published online 2018, January 1, 333-368, DOI: 10.1016/B978-0-12-816136 4.00025-7.
  • [11] Huttunen-Saarivirta E., Kuokkala V.T., Kokkonen J., Paajanen H., Corrosion effects of runway de-icing chemicals on aircraft alloys and coatings, Mater. Chem. Phys. 2011, 126(1-2), 138-151, DOI: 10.1016/j.matchemphys.2010.11.049.
  • [12] Antonini C., Innocenti M., Horn T., Marengo M., Amirfazli A., Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems, Cold. Reg. Sci. Technol. 2011, 67(1-2), 58-67, DOI: 10.1016/J. COLDREGIONS.2011.02.006.
  • [13] Zheng H., Liu G., Nienhaus B.B., Buddingh J.V., Ice shedding polymer coatings with high hardness but low ice adhesion, ACS Appl. Mater. Interfaces 2022, 14(4), 6071- -6082. DOI: 10.1021/ACSAMI.1C23483/SUPPL_FILE/ AM1C23483_SI_007.MP4.
  • [14] Brassard J.D., Sarkar D.K., Perron J., Fluorine based superhydrophobic coatings, Appl. Sci. 2012, 2(2), 453-464, DOI: 10.3390/APP2020453.
  • [15] Li H., Li X., Luo C., Zhao Y., Yuan X., Icephobicity of polydimethylsiloxane-b-poly(fluorinated acrylate), Thin Solid Films 2014, 573, 67-73, DOI: 10.1016/j.tsf.2014.11.007.
  • [16] Bogdanowicz K.A., Dutkiewicz M., Maciejewski H. et al., Siloxane resins as hydrophobic self-cleaning layers for silicon and dye-sensitized solar cells: material and applica tion aspects, RSC Adv. 2022, 12(30), 19154-19170, DOI: 10.1039/D2RA02698H.
  • [17] Hong S., Wang R., Huang X., Liu H., Facile one-step fabrication of PHC/PDMS anti-icing coatings with mecha nical properties and good durability, Prog. Org. Coat. 2019, 135, 263-269, DOI: 10.1016/J.PORGCOAT.2019.06.016.
  • [18] Song Y., Zhai R., Zhang J. et al., Effect of fluorine atom positions on the properties of waterborne polyurethanes, Prog. Org. Coat. 2024, 189, 108330, DOI: 10.1016/ J.PORGCOAT.2024.108330.
  • [19] Zhang J., Jiang Z., Wang Y. et al., Abrasion resistant waterborne polyurethane coatings based on dual crosslinked structure, Prog. Org. Coat. 2024, 190, 108336, DOI: 10.1016/ J.PORGCOAT.2024.108336.
  • [20] Zhang Z., Han X., Jia L., Yu W., Zheng Q., Highly water resistant transparent waterborne polyurethane thermal insulation coating material with multiple self-crosslinking network based on controllably activated end-capping reagent, Prog. Org. Coat. 2024, 187, 108104, DOI: 10.1016/J.PORGCOAT.2023.108104.
  • [21] Li G., Tan Y., Li Z. et al., Advances in waterborne polyure thane matting resins: A review, Appl. Surf. Sci. Adv. 2024, 19, 100557, DOI: 10.1016/J.APSADV.2023.100557.
  • [22] Lee D., Park J., Woo M.J. et al., Impact of polymer structure in polyurethane topcoats on anti-icing properties, Appl. Surf. Sci. 2024, 667, 160402, DOI: 10.1016/J.APSUSC. 2024.160402
  • [23] Zhang Y., Li X., Lu L., Guan Y., Anti-icing polyurethane coating on glass fiber-reinforced plastics induced by femtosecond laser texturing, Appl. Surf. Sci. 2024, 662, 160077, DOI: 10.1016/J.APSUSC.2024.160077.
  • [24] Pola J., Thermal reactive modifications of polymer surfaces by infrared laser radiation, J. Anal. Appl. Pyrolysis 2023, 169, 105819, DOI: 10.1016/J.JAAP.2022.105819.
  • [25] Martinez-Calderon M., Haase T.A., Novikova N.I. et al., Turning industrial paints superhydrophobic via femtosecond laser surface hierarchical structuring, Prog. Org. Coat. 2022, 163, 106625, DOI: 10.1016/J.PORGCOAT.2021.106625.
  • [26] Estevam-Alves R., Günther D., Dani S. et al., UV direct laser interference patterning of polyurethane substrates as tool for tuning its surface wettability, Appl. Surf. Sci. 2016, 374, 222-228, DOI: 10.1016/j.apsusc.2015.11.119.
  • [27] Kozera R., Ziętkowska K., Przybyszewski B. et al., The effect of modification of gelcoat based on unsaturated polyester resin with polysiloxanes on icephobicity, hydrophobicity and durability, Colloids Surfaces A Physico chem. Eng. Asp. 2023, 675, 132025, DOI: 10.1016/ J.COLSURFA.2023.132025.
  • [28] Kozera R., Ziętkowska K., Przybyszewski B. et al., Spherosilicate-modified epoxy coatings with enhanced icephobic properties for wind turbines applications, Colloids Surfaces A Physicochem. Eng. Asp. 2023, 679, 132475, DOI: 10.1016/J.COLSURFA.2023.132475.
  • [29] Kozera R., Ziętkowska K., Krawczyk Z. et al., Modification of gelcoat based unsaturated polyester resin with functionalized octaspherosilicates to reduce the ice adhesion strength, Colloids Surfaces A Physicochem. Eng. Asp. 2024, 688, 133549, DOI: 10.1016/J.COLSURFA.2024. 133549.
  • [30] Kozera R., Przybyszewski B., Krawczyk Z.D. et al., Hydrophobic and anti-icing behavior of uv-laser-treated polyester resin-based gelcoats, Processes 2020, 8(12), 1-19, DOI: 10.3390/pr8121642.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de09c1e7-1f05-468f-9cc1-6ad34fcdc613
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.