PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Polymeric flocculants based on the interfacial characteristics of fine clay minerals : a review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fine clay minerals, found in various industrial effluents, have attracted much attention in recent times. They can form a highly stable suspension in water and increase the complexity of sedimentation for the treatment of wastewater. In the past few decades, the flocculation of fine clay minerals has been significantly improved due to numerous design advancements in the molecular weight, charge density and structure of polymeric flocculants. In this article, the interfacial characteristics and affecting factors of clay minerals are discussed, the design, synthesis and application of synthetic polymers, natural polymers and natural-based grafted polymers are reviewed, as well as the advantages and disadvantages of three types of polymers. The development direction of upgrading existing clay mineral flocculants is proposed based on the interfacial characteristics of clay minerals. Weakening the hydration of clay minerals, altering the manner of molecular interaction and precisely controlling the structure of polymer chains are the design objectives of novel polymeric flocculants.
Rocznik
Strony
art. no. 149652
Opis fizyczny
Bibliogr. 115 poz., rys., wykr.
Twórcy
  • Department of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
  • School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232001, China
autor
  • Department of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
  • State Key Laboratory Mining Response and Disaster Prevention and Control in Deep Coal Mines, Huainan 232001, China
autor
  • Department of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
autor
  • Department of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
Bibliografia
  • ABDOLLAHI, Z., FROUNCHI, M., DADBIN, S., 2011. Synthesis, characterization and comparison of PAM, cationic PDMC and P(AM-co-DMC) based on solution polymerization. J. Ind. Eng. Chem. 17, 580-586.
  • AGBOVI, H.K., WILSON, L.D., 2018. Design of amphoteric chitosan flocculants for phosphate and turbidity removal in wastewater. Carbohydr. Polym. 189, 360-370.
  • ANTHONY, R., SIMS, R., 2013. Cationic starch for microalgae and total phosphorus removal from wastewater. J. Appl. Polym. Sci. 130, 2572-2578.
  • ATLURI, V., JIN, J., SHRIMALI, K., DANG, L., WANG, X., MILLER, J.D., 2019. The hydrophobic surface state of talc as influenced by aluminum substitution in the tetrahedral layer. J. Colloid Interface Sci. 536, 737-748.
  • BARANY, S., MESZAROS, R., MARCINOVA, L., SKVARLA, J., 2011. Effect of polyelectrolyte mixtures on the electrokinetic potential and kinetics of flocculation of clay mineral particles. Colloids Surf. Physicochem. Eng. Aspects 383, 48-55.
  • BARBA, C., MONTANE, D., RINAUDO, M., FARRIOL, X., 2002. Synthesis and characterization of carboxymethylcelluloses (CMC) from non-wood fibers I. Accessibility of cellulose fibers and CMC synthesis. Cellulose 9, 319-326.
  • BOLTO, B., GREGORY, J., 2007. Organic polyelectrolytes in water treatment. Water Res. 41, 2301-2324.
  • BOTHA, L., SOARES, J.B.P., 2015. The Influence of Tailings Composition on Flocculation. Can. J. Chem. Eng. 93, 1514-1523.
  • CARLA, G. FONSECA, GUSTAVO S.G. de CARVALHO, Fernando Wypych, Renata Diniz, Leitao, A.A., 2016. Na+ as a probe to structural investigation of dehydrated smectites using NMR spectra calculated by DFT. Appl. Clay Sci. 126, 132-140.
  • CHANG, Q., ZHANG, M., WANG, J., 2009. Removal of Cu2+ and turbidity from wastewater by mercaptoacetyl chitosan. J. Hazard. Mater. 169, 621-625.
  • CHANG, Z., SUN, C., KOU, J., FU, G., QI, X., 2021. Experimental and molecular dynamics simulation study on the effect of polyacrylamide on bauxite flotation. Miner. Eng. 164.
  • CHAOUF, S., BARKANY, S.E., JILAL, I., 2019. Anionic reverse microeulsion grafting of acrylamide (AM) on hydroxyethylcellulose (HEC): Synthesis, characterization and application as new ecofriendly low-cost flocculant. J. Water Process Eng. 31.
  • CHEN, J., MIN, F., LIU, L., CAI, C., 2020a. Systematic exploration of the interactions between Fe-doped kaolinite and coal based on DFT calculations. Fuel 266.
  • CHEN, J., MIN, F. F., LIU, L.Y., 2019a. The interactions between fine particles of coal and kaolinite in aqueous, insights from experiments and molecular simulations. Appl. Surf. Sci. 467-468, 12-21.
  • CHEN, J., MIN, F. F., LIU, L.Y., 2019b. Mechanism research on surface hydration of kaolinite, insights from DFT and MD simulation. Appl. Surf. Sci. 476, 6-15.
  • CHEN, N., LIU, W., HUANG, J., QIU, X., 2020b. Preparation of octopus-like lignin-grafted cationic polyacrylamide flocculant and its application for water flocculation. Int. J. Biol. Macromol. 146, 9-17.
  • CHEN, W.J., 1998. Effects of Surface Charge and Shear During Orthokinetic Flocculation on the Adsorption and Sedimentation of Kaolin Suspensions in Polyelectrolyte Solutions. Sep. Sci. Technol. 33, 569-590.
  • DIAZ-BARRERA, A., GUTIERREZ, J., MARTINEZ, F., ALTAMIRANO, C., 2014. Production of alginate by Azotobacter vinelandii grown at two bioreactor scales under oxygen-limited conditions. Bioproc. Biosyst. Eng. 37, 1133-1140.
  • EZZAHRA ABOUSSABIQ, F., KADER YETTEFTI, I., AMINE, J., DEL MAR SOCIAS-VICIANA, M., ASSOBHEI, O., 2014. Coagulation - Flocculation of Domestic Wastewater by Moroccan Clays: Removal of Organic Matter and Suspended Solids. Carpath. J. Earth Env. 9, 33-42.
  • MIN, F., CHEN, J., PENG, C., 2018. Molecular dynamics simulation on the surface hydration of fine kaolinite and montmorillonite particles in coal slurry water. J. China Coal Soc. 43, 242-249.
  • FATOMBI, J.K., MBEY, J.-A., AMINOU, T., LARTIGES, B., TOPANOU, N., BARRES, O., JOSSE, R.G., 2011. Flocculation of Kaolinite Suspensions in Water by Coconut Cream Casein. J. Water Resour. Prot. 3, 918.
  • FENG, Z., CHEN, H., LI, H., YUAN, R., WANG, F., CHEN, Z., ZHOU, B., 2020. Preparation, characterization, and application of magnetic activated carbon for treatment of biologically treated papermaking wastewater. Sci. Total Environ. 713, 136423.
  • GAO, B., CHANG, Q., CAI, J., XI, Z., LI, A., YANG, H., 2021. Removal of fluoroquinolone antibiotics using actinia-shaped lignin-based adsorbents: Role of the length and distribution of branched-chains. J. Hazard. Mater. 403, 123603.
  • GEATCHES, D. L., JACQUET, A., CLARK, S. J., GREENWELL, H. C., 2012. Monomer adsorption on kaolinite: Modeling the essential ingredients. J. Phys. Chem. C. 116, 22365-22374.
  • GREGORY, J., O'MELIA, C. R., 1989. Fundamentals of flocculation. Crit. Rev. Env. Sci. Tec. 19(3): 185-230.
  • GUO, K., GAO, B., WANG, W., YUE, Q., XU, X., 2019. Evaluation of molecular weight, chain architectures and charge densities of various lignin-based flocculants for dye wastewater treatment. Chemosphere 215, 214-226.
  • HASAN, A., FATEHI, P., 2018. Synthesis and characterization of lignin-poly(acrylamide)-poly(2-methacryloyloxyethyl) trimethyl ammonium chloride copolymer. J. Appl. Polym. Sci. 135.
  • HASAN, A., FATEHI, P., 2019. Cationic kraft lignin-acrylamide copolymer as a flocculant for clay suspensions: (2) Charge density effect. Sep. Purif. Technol. 210, 963-972.
  • HAUFE, S., BOHRISCH, J., SCHWARZ, D., BRATSKAYA, S.Y., STEINBACH, C., SCHWARZ, S., 2017. Flocculation efficiency of reacetylated water soluble chitosan versus commercial chitosan. Colloids Surf. Physicochem. Eng. Aspects 532, 222-227.
  • HELLING, C. S., CHESTERS, G., COREY, R.B.,1964. Contribution of organic matter and clay to soil cation-exchange capacity as affected by the pH of the saturating solution. Soil Sci. Soc. Am. J. 28, 517-520.
  • HO, Y.C., NORLI, I., ALKARKHI, A.F.M., MORAD, N., 2010. Characterization of biopolymeric flocculant (pectin) and organic synthetic flocculant (PAM): A comparative study on treatment and optimization in kaolin suspension. Bioresour. Technol. 101, 1166-1174.
  • HU, P., SHEN, S., ZHAO, D., WEI, H., GE, J., JIA, F., ZHANG, X., YANG, H., 2021. The influence of hydrophobicity on sludge dewatering associated with cationic starch-based flocculants. J. Environ. Manage 296, 113218.
  • HU, P., XI, Z., LI, Y., LI, A., YANG, H., 2020. Evaluation of the structural factors for the flocculation performance of a co-graft cationic starch-based flocculant. Chemosphere 240, 124866.
  • JAAFARI, K., RUIZ, T., ELMALEH, S., COMA, J., BENKHOUJA, K., 2004. Simulation of a fixed bed adsorber packed with protonated cross-linked chitosan gel beads to remove nitrate from contaminated water. Chem. Eng. J. 99, 153-160.
  • JACQUET, A., GEATCHES, D. L., CLARK, S. J., GREENWELL, H. C., 2018. Understanding cationic polymer adsorption on mineral surfaces: kaolinite in cement aggregates. Minerals, 8, 130.
  • JAIN, V., RAI, B., WAGHMARE, U. V., TAMMISHETTI, V., 2013. Processing of alumina-rich iron ore slimes: Is the selective dispersion-flocculation-flotation the solution we are looking for the challenging problem facing the Indian iron and steel industry? Trans. Indian. Inst. Met, 66, 447-456.
  • JIANG, X., QI, Y., WANG, S., TIAN, X., 2010. New amphoteric flocculant containing beta-cyclodextrin, synthesis, charaterization and decolorization properties. J. Hazard. Mater. 173, 298-304.
  • JIAO, R., XU, H., XU, W., YANG, X., WANG, D., 2015. Influence of coagulation mechanisms on the residual aluminum – The roles of coagulant species and MW of organic matter. J. Hazard. Mater. 290, 16-25.
  • KAUR, S., DHILLON, G.S., 2014. The versatile biopolymer chitosan: potential sources, evaluation of extraction methods and applications. Crit. Rev. Microbiol. 40, 155-175.
  • KONDURI, M.K.R., FATEHI, P., 2017. Influence of pH and ionic strength on flocculation of clay suspensions with cationic xylan copolymer. Colloids Surf. Physicochem. Eng. Aspects 530, 20-32.
  • KUMAR, D., JAIN, V., RAI, B., 2018. Can carboxymethyl cellulose be used as a selective flocculant for beneficiating alumina-rich iron ore slimes? A density functional theory and experimental study. Miner. Eng. 121, 47-54.
  • LAPOINTE, M., BARBEAU, B., 2020. Understanding the roles and characterizing the intrinsic properties of synthetic vs. natural polymers to improve clarification through interparticle Bridging: A review. Sep. Purif. Technol. 231.
  • LEE, C.S., ROBINSON, J., CHONG, M.F., 2014. A review on application of flocculants in wastewater treatment. Process Saf. Environ. Prot. 92, 489-508.
  • LEE, K.E., MORAD, N., TENG, T.T., POH, B.T., 2012. Development, characterization and the application of hybrid materials in coagulation/flocculation of wastewater: A review. Chem. Eng. J. 203, 370-386.
  • LEE, S. G., CHOI, J. I., KOH, W., JANG, S. S., 2013. Adsorption of β-D-glucose and cellobiose on kaolinite surfaces: Density functional theory (DFT) approach. Appl. Clay. Sci. 71, 73-81.
  • LI, M., WANG, Y., HOU, X., WAN, X., XIAO, H.-N., 2018. DMC-grafted cellulose as green-based flocculants for agglomerating fine kaolin particles. Green Energy Environ. 3, 138-146.
  • LI, H., LONG, J., XU, Z., MASLIYAH, J. H., 2007. Flocculation of kaolinite clay suspensions using a temperature‐sensitive polymer. AIChE J. 53(2): 479-488.
  • LI, X., LIU, N., TANG, L., ZHANG, J., 2020. Specific elevated adsorption and stability of cations in the interlayer compared with at the external surface of clay minerals. Appl. Clay Sci. 198.
  • LIAO, Y., ZHENG, X., ZHANG, Z., XU, B., SUN, Y., LIU, Y., ZHENG, H., 2017. Ultrasound-assisted polymerization of P(AM-DMDAAC): Synthesis, characterization and sludge dewatering performance. J. Environ. Chem. Eng. 5, 5439-5447.
  • LIU, B., ZHENG, H., WANG, Y., CHEN, X., ZHAO, C., AN, Y., TANG, X., 2018. A novel carboxyl-rich chitosan-based polymer and its application for clay flocculation and cationic dye removal. Sci. Total Environ. 640-641, 107-115.
  • LIU, C., GAO, B., WANG, S., GUO, K., SHEN, X., YUE, Q., XU, X., 2020a. Synthesis, characterization and flocculation performance of a novel sodium alginate-based flocculant. Carbohydr. Polym. 248, 116790.
  • LIU, C., GAO, B., WANG, S., GUO, K., SHEN, X., YUE, Q., XU, X., 2020b. Synthesis, characterization and flocculation performance of a novel sodium alginate-based flocculant. Carbohydr. Polym. 248, 116790.
  • LIU, C., MIN, F., LIU, L., CHEN, J., 2019a. Hydration properties of alkali and alkaline earth metal ions in aqueous solution: A molecular dynamics study. Chem. Phys. Lett. 727, 31-37.
  • LIU, H., YANG, X., ZHANG, Y., ZHU, H., YAO, J., 2014. Flocculation characteristics of polyacrylamide grafted cellulose from Phyllostachys heterocycla: An efficient and eco-friendly flocculant. Water Res. 59, 165-171.
  • LIU, T., DING, E., XUE, F., 2017. Polyacrylamide and poly (N, N-dimethylacrylamide) grafted cellulose nanocrystals as efficient flocculants for kaolin suspension. Int. J. Biol. Macromol. 103, 1107-1112.
  • LIU, Y., ZHENG, H., AN, Y., REN, J., ZHENG, X., ZHAO, C., ZHANG, S., 2019b. Ultrasound-assisted synthesis of the β-cyclodextrin based cationic polymeric flocculants and evaluation of flocculation performance: Role of β-cyclodextrin. Sep. Purif. Technol. 228, 115735.
  • LOU, T., WANG, X., SONG, G., CUI, G., 2017. Synthesis and flocculation performance of a chitosan-acrylamide-fulvic acid ternary copolymer. Carbohydr. Polym. 170, 182-189.
  • LU, L., PAN, Z., HAO, N., PENG, W., 2014. A novel acrylamide-free flocculant and its application for sludge dewatering. Water Res. 57, 304-312.
  • MA, J., FU, K., FU, X., GUAN, Q., DING, L., SHI, J., ZHU, G., ZHANG, X., ZHANG, S., JIANG, L., 2017a. Flocculation properties and kinetic investigation of polyacrylamide with different cationic monomer content for high turbid water purification. Sep. Purif. Technol. 182, 134-143.
  • MA, J., SHI, J., DING, H., ZHU, G., FU, K., FU, X., 2017b. Synthesis of cationic polyacrylamide by low-pressure UV initiation for turbidity water flocculation. Chem. Eng. J. 312, 20-29.
  • MA, X., FAN, Y., DONG, X., CHEN, R., LI, H., SUN, D., YAO, S., 2018. Impact of Clay Minerals on the Dewatering of Coal Slurry: An Experimental and Molecular-Simulation Study. Minerals, 8.
  • MIN, F., PENG, C., LIU, L., 2015. Investigation on hydration layers of fine clay mineral particles in different electrolyte aqueous solutions. Powder Technol. 283, 368-372.
  • MIN, F.F., CHEN, J., LIU, Y.Y., 2018. State-of-the-art and developing trend of the new technologies for treating difficult-to-settle coal slurry. Coal Prep. Technol. 5, 4-9.
  • MIN, F.F., ZHAO, Q., 2013. Study of electrokinetic properties of kaolinite in coal slime. J. China Univ. Min. Technol. 42, 284-391.
  • MISHRA, S., KUNDU, K., 2019. Synthesis, characterization and applications of polyacrylamide grafted fenugreek gum (FG-g-PAM) as flocculant: Microwave vs thermal synthesis approach. Int. J. Biol. Macromol. 141, 792-808.
  • MITTAL, H., KUMAR, V., ALHASSAN, S.M., RAY, S.S., 2018. Modification of gum ghatti via grafting with acrylamide and analysis of its flocculation, adsorption, and biodegradation properties. Int. J. Biol. Macromol. 114, 283-294.
  • MURTAZA, M., AHMAD, H.M., KAMAL, M.S., HUSSAIN, S.M.S., MAHMOUD, M., PATIL, S., 2020. Evaluation of Clay Hydration and Swelling Inhibition Using Quaternary Ammonium Dicationic Surfactant with Phenyl Linker. Molecules 25.
  • NAKAMURA, A., MURAKAMI, K., 2019. The effect of cationic polymer as flocculant on bentonite aggregation under different pH and the study of aggregation mechanism. Clay Sci. 23, 7-14.
  • NAKAMURA, A., OZAKI, M., MURAKAMI, K., 2020. Elucidation of the aggregation mechanism of bentonite with cationic guar gum as flocculant and application to filtration. Colloids Surf., A. 596, 7.
  • NASSER, M.S., JAMES, A.E., 2006. The effect of polyacrylamide charge density and molecular weight on the flocculation and sedimentation behaviour of kaolinite suspensions. Sep. Purif. Technol. 52, 241-252.
  • NASSER, M.S., TWAIQ, F.A., ONAIZI, S.A., 2013. Effect of polyelectrolytes on the degree of flocculation of papermaking suspensions. Sep. Purif. Technol. 103, 43-52.
  • NDLOVU, B., FARROKHPAY, S., BRADSHAW, D., 2013. The effect of phyllosilicate minerals on mineral processing industry. Int. J. Miner. Process. 125, 149-156.
  • NG, W. S., CONNAL, L. A., FORBES, E., MOHANARANGAM, K., FRANKS, G. V., 2017. In situ investigation of aggregate sizes formed using thermo-responsive polymers: Effect of temperature and shear. J. Colloid Interface Sci. 494, 139-152.
  • NG, W. S., CONNAL, L. A., FORBES, E., FRANKS, G. V., 2018. A review of temperature-responsive polymers as novel reagents for solid-liquid separation and froth flotation of minerals. Miner. Eng. 123, 144-159.
  • PAL, S., SEN, G., GHOSH, S., SINGH, R.P., 2012. High performance polymeric flocculants based on modified polysaccharides—Microwave assisted synthesis. Carbohydr. Polym. 87, 336-342.
  • PARFITT, R. L., GILTRAO, D. J., WHITTON, J. S., 1995. Contribution of organic matter and clay minerals to the cation exchange capacity of soils. Commun. Soil Sci. Plan. 26: 1343-1355.
  • PENG, C. L. and MIN, F. F., 2015. Study on hydration of Montmorillonite in aqueous solutions. Miner. Metall. Process 32, 196-202.
  • PENG, C., MIN, F., LIU, L., CHEN, J., 2016. A periodic DFT study of adsorption of water on sodium-montmorillonite (001) basal and (010) edge surface. Appl. Surf. Sci. 387, 308-316.
  • QUEZADA, G.R., ROZAS, R.E., TOLEDO, P.G., 2021. Polyacrylamide adsorption on (1 0 1) quartz surfaces in saltwater for a range of pH values by molecular dynamics simulations. Miner. Eng. 162.
  • RAZALI, M.A.A., ARIFFIN, A., 2015. Polymeric flocculant based on cassava starch grafted polydiallyldimethylammonium chloride: Flocculation behavior and mechanism. Appl. Surf. Sci. 351, 89-94.
  • RAZALI, M.A.A., ISMAIL, H., ARIFFIN, A., 2015. Graft copolymerization of polyDADMAC to cassava starch: Evaluation of process variables via central composite design. Ind. Crop. Prod. 65, 535-545.
  • REN, B., LV, K., MIN, F., CHEN, J., LIU, C., 2021. A new insight into the adsorption behavior of NPAM on kaolinite/water interface: Experimental and theoretical approach. Fuel 303.
  • REN, B., MIN, F., CHEN, J., FANG, F., LIU, C., 2020a. Adsorption mechanism insights into CPAM structural units on kaolinite surfaces: A DFT simulation. Appl. Clay Sci. 197.
  • REN, B., MIN, F., LIU, L., CHEN, J., LIU, C., LV, K., 2020b. Adsorption of different PAM structural units on kaolinite (001) surface: density functional theory study. Appl. Surf. Sci. 504, 144324.
  • SABAH, E., YÜZER, H., CELIK, M.S., 2004. Characterization and dewatering of fine coal tailings by dual-flocculant systems. Int. J. Miner. Process. 74, 303-315.
  • SALEHIZADEH, H., YAN, N., FARNOOD, R., 2018. Recent advances in polysaccharide bio-based flocculants. Biotechnol. Adv. 36, 92-119.
  • SAND, A., KWARK, Y.-J., 2017. Modification of guar gum through grafting of acrylamide with potassium bromate/thiourea redox initiating system. Fiber. Polymer. 18, 675-681.
  • SHARMA, B.R., DHULDHOYA, N.C., MERCHANT, U.C., 2006. Flocculants—an Ecofriendly Approach. J. Polym. Environ. 14, 195-202.
  • SINGH, R.P., PAL, S., RANA, V.K., GHORAI, S., 2013. Amphoteric amylopectin: A novel polymeric flocculant. Carbohydr. Polym. 91, 294-299.
  • SUN, W., ZENG, H., TANG, T., 2020. Synergetic adsorption of polymers on montmorillonite: Insights from molecular dynamics simulations. Appl. Clay Sci. 193.
  • SUN, W., ZHOU, S., SUN, Y., XU, Y., 2021a. Synthesis and evaluation of cationic flocculant P(DAC-PAPTAC-AM) for flocculation of coal chemical wastewater. J. Environ. Sci. 99, 239-248.
  • SUN, X., LIU, W., YANG, Z., ZHUO, Q., ZHANG, H., GENG, P., 2021b. DFT study of the adsorption of 2,3-epoxypropyltrimethylammonium chloride on montmorillonite surfaces. J. Mol. Liq. 334.
  • TAN, X.L., HU, L.M., REED, A.H., FURUKAWA, Y., ZHANG, G.P., 2014. Flocculation and particle size analysis of expansive clay sediments affected by biological, chemical, and hydrodynamic factors. Ocean Dynam. 64, 143-157.
  • TANG, Q., CHEN, W., DAI, X., LIU, Y., LIU, H., FAN, L., LUO, H., JI, L., ZHANG, K., 2021. Exploring the perspective of nano-TiO2 in hydrophobic modified cationic flocculant preparation: Reaction kinetics and emulsified oil removal performance. Chemosphere 263, 128066.
  • TANG, X., JIANG, X., ZHANG, S., ZHENG, H., TAN, X., 2018. Recent Progress on Graft Polymerization of Natural Polymer Flocculants: Synthesis Method, Mechanism and Characteristic. Mini-Rev. Org. Chem. 15, 227-235.
  • TOMBÁCZ, E., SZEKERES, M., 2004. Colloidal behavior of aqueous montmorillonite suspensions: the specific role of pH in the presence of indifferent electrolytes. Appl. Clay Sci. 27, 75-94.
  • WANG, B., WANG, S. F., LAM, S. S., SONNE, C., YUAN, T. Q., SONG, G. Y., SUN, R. C., 2020a. A review on production of lignin-based flocculants: Sustainable feedstock and low carbon footprint applications. Renew. Sust. Energ. Rev. 134.
  • WANG, M., FENG, L., YOU, X., ZHENG, H., 2021. Effect of fine structure of chitosan-based flocculants on the flocculation of bentonite and humic acid: Evaluation and modeling. Chemosphere 264, 128525.
  • WANG, S., KONDURI, M.K.R., HOU, Q., FATEHI, P., 2016. Cationic xylan–METAC copolymer as a flocculant for clay suspensions. RSC Adv. 6, 40258-40269.
  • WANG, Z., HUANG, W., YANG, G., LIU, Y., LIU, S., 2019. Preparation of cellulose-base amphoteric flocculant and its application in the treatment of wastewater. Carbohydr. Polym. 215, 179-188.
  • WANG, Z.Q., FAN, Y.P., DONG, X.S., 2020b. Study on adsorption characteristics of polymer flocculant and illite particles. Min. Res. Dev. 40, 136-141.
  • WILKINSON, N., METAXAS, A., QUINNEY, C., WICKRAMARATNE, S., REINEKE, T.M., DUTCHER, C.S., 2018. pH dependence of bentonite aggregate size and morphology on polymer-clay flocculation. Colloids Surf. Physicochem. Eng. Aspects 537, 281-286.
  • WU, H., LIU, Z., YANG, H., LI, A., 2016. Evaluation of chain architectures and charge properties of various starch-based flocculants for flocculation of humic acid from water. Water Res. 96, 126-135.
  • YANG, Z., HOU, T., MA, J., YUAN, B., TIAN, Z., YANG, W., GRAHAM, N.J.D., 2020. Role of moderately hydrophobic chitosan flocculants in the removal of trace antibiotics from water and membrane fouling control. Water Res. 177, 115775.
  • YANG, Z., SHANG, Y., LU, Y., CHEN, Y., HUANG, X., CHEN, A., JIANG, Y., GU, W., QIAN, X., YANG, H., CHENG, R., 2011. Flocculation properties of biodegradable amphoteric chitosan-based flocculants. Chem. Eng. J. 172, 287-295.
  • YANG, Z., YUAN, B., HUANG, X., ZHOU, J., CAI, J., YANG, H., LI, A., CHENG, R., 2012. Evaluation of the flocculation performance of carboxymethyl chitosan-graft-polyacrylamide, a novel amphoteric chemically bonded composite flocculant. Water Res. 46, 107-114.
  • YI, H., JIA, F., ZHAO, Y., WANG, W., SONG, S., LI, H., LIU, C., 2018. Surface wettability of montmorillonite (0 0 1) surface as affected by surface charge and exchangeable cations: A molecular dynamic study. Appl. Surf. Sci. 459, 148-154.
  • ZENG, T., HU, X.Q., WU, H., YANG, J.W., ZHANG, H.B., 2019. Microwave assisted synthesis and characterization of a novel bio-based flocculant from dextran and chitosan. Int. J. Biol. Macromol. 131, 760-768.
  • ZHANG, B., SU, H., GU, X., HUANG, X., WANG, H., 2013. Effect of structure and charge of polysaccharide flocculants on their flocculation performance for bentonite suspensions. Colloids Surf. Physicochem. Eng. Aspects 436, 443-449.
  • ZHANG, M., PENG, Y., 2015. Effect of clay minerals on pulp rheology and the flotation of copper and gold minerals. Miner. Eng. 70, 8-13.
  • ZHANG, S., ZHENG, H., TANG, X., SUN, Y., WU, Y., ZHENG, X., SUN, Q., 2019. Evaluation a self-assembled anionic polyacrylamide flocculant for the treatment of hematite wastewater: Role of microblock structure. J. Taiwan Inst. Chem. E. 95, 11-20.
  • ZHAO, X., WANG, X., SONG, G., LOU, T., 2020. Microwave assisted copolymerization of sodium alginate and dimethyl diallyl ammonium chloride as flocculant for dye removal. Int. J. Biol. Macromol. 156, 585-590.
  • ZHOU, C.H., ZHAO, L.Z., WANG, A.Q., CHEN, T.H., HE, H.P., 2016. Current fundamental and applied research into clay minerals in China. Appl. Clay Sci. 119, 3-7.
  • ZHOU, Y., ZHENG, H., WANG, Y., ZHAO, R., LIU, H., DING, W., AN, Y., 2020. Enhanced municipal sludge dewaterability using an amphiphilic microblocked cationic polyacrylamide synthesized through ultrasonic-initiation: Copolymerization and flocculation mechanisms. Colloids Surf. Physicochem. Eng. Aspects 594.
  • ZIOLKOWSKA, D., SHYICHUK, A., 2011. Flocculation abilities of industrial cationic starches. Polimery 56, 244-246
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de071a92-62c2-4ca3-837a-a471ed423b90
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.