Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We investigate the structural properties of a spatio-temporal network of earthquake events that incorporates magnitude information between the connected events. The network creates temporally directed links from an origin event towards a later event if it breaks the record closest distance from the origin among all the events in the catalog so far. Additionally, the links are conditionally classified based on the magnitude difference between connected events: “up” (“down”) connections point from a weaker (stronger) to a stronger (weaker) event. Using earthquake records from the Philippines from 1973 to 2012 and southern California from 1982 to 2012, we observe that the out-degree distributions show slight deviations from the corresponding Poisson distribution of the same mean. The space and time separations of connected earthquakes both show power-law regimes, suggesting spatio-temporal (self)organization. More importantly, the conditional distributions of “up” and “down” connections in space, time, and network structure point to a higher likelihood of a stronger event triggering a nearby weaker event for the first few connections, as in the case of aftershocks. The results are captured by a sandpile-based model where a small but finite probability of preferentially targeting the most susceptible grid site is introduced. Our analysis, coupled with the discrete model analog, provides a quantitative picture of the spatio-temporal and magnitude organization of seismicity beyond just the successive events. The technique may be extended to further characterize similar long-period earthquake records to yield a more complete picture of the underlying processes involved in seismicity.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1153--1166
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
autor
- National Institute of Physics, University of the Philippines, Diliman, Quezon City, Philippines
autor
- National Institute of Physics, University of the Philippines, Diliman, Quezon City, Philippines
autor
- National Institute of Physics, University of the Philippines, Diliman, Quezon City, Philippines
Bibliografia
- 1. Abe S, Suzuki N (2007) Dynamical evolution of clustering in complex network of earthquakes. Eur Phys J B 59(1):93–97. https://doi.org/10.1140/epjb/e2007-00259-3
- 2. Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Modern Phys 74(1):47. https://doi.org/10.1103/RevModPhys.74.47
- 3. Baiesi M, Paczuski M (2004) Scale-free networks of earthquakes and aftershocks. Phys Rev E 69(6):066106. https://doi.org/10.1103/PhysRevE.69.066106
- 4. Bak P, Tang C (1989) Earthquakes as a self-organized critical phenomenon. J Geophys Res 94:15635–15637. https://doi.org/10.1029/JB094iB11p15635
- 5. Bak P, Christensen K, Danon L, Scanlon T (2002) Unified scaling law for earthquakes. Phys Rev Lett 88:178501. https://doi.org/10.1103/PhysRevLett.88.178501
- 6. Batac RC (2016) Statistical properties of the immediate aftershocks of the 15 October 2013 magnitude 7.1 earthquake in Bohol, Philippines. Acta Geophys 64(1):15–25. https://doi.org/10.1515/acgeo-2015-0054
- 7. Batac RC, Kantz H (2014) Observing spatio-temporal clustering and separation using interevent distributions of regional earthquakes. Nonlinear Processes Geophys 21(4):735–744. https://doi.org/10.5194/npg-21-735-2014
- 8. Batac RC, Paguirigan AA Jr, Tarun AB, Longjas AG (2017) Sandpile-based model for capturing magnitude distributions and spatiotemporal clustering and separation in regional earthquakes. Nonlinear Processes Geophys 24(2):179–187. https://doi.org/10.5194/npg-24-179-2017
- 9. Davidsen J, Baiesi M (2016) Self-similar aftershock rates. Phys Rev E 94(2):022314. https://doi.org/10.1103/PhysRevE.94.022314
- 10. Davidsen J, Paczuski M (2005) Analysis of the spatial distribution between successive earthquakes. Phys Rev Lett 94:048501. https://doi.org/10.1103/PhysRevLett.94.048501
- 11. Davidsen J, Grassberger P, Paczuski M (2006) Earthquake recurrence as a record breaking process. Geophys Res Lett 33(11):L11304. https://doi.org/10.1029/2006GL026122
- 12. Davidsen J, Grassberger P, Paczuski M (2008) Networks of recurrent events, a theory of records, and an application to finding causal signatures in seismicity. Phys Rev E 77(6):066104. https://doi.org/10.1103/PhysRevE.77.066104
- 13. Efstathiou A, Tzanis A, Vallianatos F (2017) On the nature and dynamics of the seismogenetic systems of North California, USA: an analysis based on non-extensive statistical physics. Phys Earth Planet Inter 270:46–72. https://doi.org/10.1016/j.pepi.2017.06.010
- 14. Frohlich C, Davis SD (1993) Teleseismic b values; or, much ado about 10. J Geophys Res Solid Earth 98(B1):631–644. https://doi.org/10.1029/92JB01891
- 15. Gu C, Schumann AY, Baiesi M, Davidsen J (2013) Triggering cascades and statistical properties of aftershocks. J Geophys Res Solid Earth 118:4278–4295. https://doi.org/10.1002/jgrb.50306
- 16. Gutenberg B, Richter CF (1954) Seismicity of the earth and associated phenomena, 2nd edn. Princeton University Press, Princeton
- 17. Hayakawa M, Hobara Y (2010) Current status of seismoelectromagnetics for short-term earthquake prediction. Geomatics Nat Hazards Risk 1(2):115–155. https://doi.org/10.1080/19475705.2010.486933
- 18. Helmstetter A, Kagan YY, Jackson DD (2005) Importance of small earthquakes for stress transfers and earthquake triggering. J Geophys Res 110(B5):2156–2202. https://doi.org/10.1029/2004JB003286
- 19. Ito K, Matsuzaki M (1990) Earthquakes as self-organized critical phenomena. J Geophys Res 95:6853–6860. https://doi.org/10.1029/JB095iB05p06853
- 20. Jagla EA (2013) Forest-fire analogy to explain the b value of the Gutenberg-Richter law for earthquakes. Phys Rev Lett 111(23):238501. https://doi.org/10.1103/PhysRevLett.111.238501
- 21. Keilis-Borok V, Soloviev AA (eds) (2013) Nonlinear dynamics of the lithosphere and earthquake prediction. Springer Science and Business Media, Berlin
- 22. Landes FP, Lippiello E (2016) Scaling laws in earthquake occurrence: disorder, viscosity, and finite size effects in Olami-Feder-Christensen models. Phys Rev E 53:051001. https://doi.org/10.1103/PhysRevE.93.051001
- 23. Livina VN, Havlin S, Bunde A (2005) Memory in the occurrence of earthquakes. Phys Rev Lett 95(20):208501. https://doi.org/10.1103/PhysRevLett.95.208501
- 24. Marekova E (2014) Analysis of the spatial distribution between successive earthquakes occurred in various regions in the world. Acta Geophys 62(6):1262–1282. https://doi.org/10.2478/s11600-014-0234-5
- 25. Narteau C, Byrdina S, Shebalin P, Schorlemmer D (2009) Common dependence on stress for the two fundamental laws of statistical seismology. Nature 462:642–645. https://doi.org/10.1038/nature08553
- 26. Olami Z, Feder HJS, Christensen K (1992) Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes. Phys Rev Lett 68(8):1244. https://doi.org/10.1103/PhysRevLett.68.1244
- 27. PDE (1973-2012), Preliminary determination of epicentres catalogue. http://earthquake.usgs.gov/earthquakes/eqarchives/epic. Last access: December 2012
- 28. Saichev A, Sornette D (2006) “Universal” distribution of interearthquake times explained. Phys Rev Lett 97(7):078501. https://doi.org/10.1103/PhysRevLett.97.078501
- 29. SCEDC (1982-2012), Southern California earthquake data center. http://www.data.scec.org/eq-catalogs/date_mag_loc.php, last access: December 2012
- 30. Schoenball M, Davatzes NC, Glen JM (2015) Differentiating induced and natural seismicity using space-time-magnitude statistics applied to the Coso Geothermal field. Geophys Res Lett 42(15):6221–6228. https://doi.org/10.1002/2015GL064772
- 31. Scholz CH (2015) On the stress dependence of the earthquake b value. Geophys Res Lett 42(5):1399–1402. https://doi.org/10.1002/2014GL062863
- 32. Schorlemmer D, Wiemer S, Wyss M (2005) Variations in earthquake-size distribution across different stress regimes. Nature 437:539–542. https://doi.org/10.1038/nature04094
- 33. Spada M, Tormann T, Wiemer S, Enescu B (2013) Generic dependence of the frequency-size distribution of earthquakes on depth and its relation to the strength profile of the crust. Geophys Res Lett 40:709–714. https://doi.org/10.1029/2012GL054198
- 34. Tarun AB, Paguirigan AA, Batac RC (2015) Spatiotemporal recurrences of sandpile avalanches. Phys A 436:293–300. https://doi.org/10.1016/j.physa.2015.05.016
- 35. Telesca L (2007) Time-clustering of natural hazards. Nat Hazards 40(3):593–601. https://doi.org/10.1007/s11069-006-9023-z
- 36. Touati S, Naylor M, Main IG (2009) Origin and nonuniversality of the earthquake interevent time distribution. Phys Rev Lett 102(16):168501. https://doi.org/10.1103/PhysRevLett.102.168501
- 37. Tzanis A, Vallianatos F, Efstathiou A (2013) Multidimensional earthquake frequency distributions consistent with non-extensive statistical physics: the interdependence of magnitude, interevent time and interevent distance in North California. Bulletin Geol. Soc. Greece 47(3):1326–1337. https://doi.org/10.12681/bgsg.10914
- 38. Zaliapin I, Ben-Zion Y (2013a) Earthquake clusters in southern California I: identification and stability. J Geophys Res 118:2847–2864. https://doi.org/10.1002/jgrb.50179
- 39. Zaliapin I, Ben-Zion Y (2013b) Earthquake clusters in southern California II: classification and relation to physical properties of the crust. J Geophys Res 118:2865–2877. https://doi.org/10.1002/jgrb.50178
- 40. Zaliapin I, Ben-Zion Y (2015) Artefacts of earthquake location errors and short-term incompleteness on seismicity clusters in southern California. Geophys J Int 202:1949–1968. https://doi.org/10.1093/gji/ggv259
- 41. Zaliapin I, Gabrielov A, Keilis-Borok V, Wong H (2008) Clustering analysis of seismicity and aftershock identification. Phys Rev Lett 101:018501. https://doi.org/10.1103/PhysRevLett.101.018501
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de00b297-4a42-49f5-b4ba-2b6b059d9190