PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Influence of Selected Physico-Chemical Pretreatment Methods on Chemical Composition and Enzymatic Hydrolysis Yield of Poplar Wood and Corn Stover

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper, three different physico-chemical pretreatment methods in relation to bioethanol production were compared. The wood of fast-growing poplar species (Populus deltoides x maximowiczii and Populus trichocarpa Torr. & A. Gray ex Hook) and corn stover were used as a feedstock. The chemical composition and enzymatic hydrolysis efficiency of the biomass before and after pretreatments were compared. On the basis of the results, it was concluded that the applied pretreatments changed the chemical composition of the raw materials. In the case of the acid and LHW (liquid hot water pretreatment) methods, up to 93.7% of hemicelluloses (especially pentosans) were removed. From among the selected pretreatment methods, the LHW and alkaline methods occurred to be the most interesting. Nevertheless, from the bioethanol production point of view, the LHW process of Populus deltoides x maximowiczii wood was the best because after enzymatic hydrolysis, high amounts of glucose (up to 600.9 mg/g pretreated biomass) and minor amounts of xylose (up to 37.9 mg/g pretreated biomass) were produced. Moreover, based on the chemical composition and sugar profile analysis, it was proved that the Populus trichocarpa wood also has a high potential for bioethanol production.
Rocznik
Strony
Art. no. 1644--3985.423.01
Opis fizyczny
Bibliogr. 65 poz., rys., tab., wykr.
Twórcy
  • Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences, Warsaw, Poland
  • Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences, Warsaw, Poland
  • Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences, Warsaw, Poland
  • Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences, Warsaw, Poland
  • Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
  • Łukasiewicz Research Network, Poznan Institute of Technology, Center of Wood Technology, Poznan, Poland
  • Łukasiewicz Research Network, Poznan Institute of Technology, Center of Wood Technology, Poznan, Poland
  • Łukasiewicz Research Network, Poznan Institute of Technology, Center of Wood Technology, Poznan, Poland
Bibliografia
  • Adney B., Baker J. [1996]: Measurement of cellulase activities (NREL/TP-510-42628). National Renewable Energy Laboratory, Golden, CO.
  • Akus-Szylberg F., Antczak A., Bytner O., Radomski A., Krajewski K., Zawadzki J. [2018]: The effect of pretreatment of corn stover with liquid hot water on its chemical composition and enzymatic hydrolysis. Przemysł Chemiczny 97[11]: 1866-1869. DOI: 10.15199/62.2018.11.10
  • Akus-Szylberg F., Antczak A., Zawadzki J. [2020]: Hydrothermal pretreatment of poplar (Populus trichocarpa) wood and its impact on chemical composition and enzymatic hydrolysis yield. Drewno 63[206]: 5-18. DOI:10.12841/wood.1644-3985.367.09
  • Akus-Szylberg F., Antczak A., Zawadzki J. [2021]: Effects of soaking aqueous ammonia pretreatment on selected properties and enzymatic hydrolysis of poplar (Populus trichocarpa) wood. Bioresources 16[3]: 5618-5627. DOI: 10.15376/biores.16.3.5618-5627
  • Alvira P., Tomas-Pejo E., Ballesteros M., Negro M.J. [2010]: Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresource Technology 101: 4851-4861. DOI: 10.1016/j.biortech.2009.11.093
  • Antczak A., Marchwicka M., Szadkowski J., Drożdżek M., Gawron J., Radomski A., Zawadzki J. [2018]: Sugars yield obtained after acid and enzymatic hydrolysis of fast-growing poplar wood species. BioResources 13[4]: 8629-8645. DOI: 10.15376/biores.13.4.8629-8645
  • Antczak A., Szadkowski J., Szadkowska D., Zawadzki J. [2022]: Assessment of the effectiveness of liquid hot water and steam explosion pretreatments of fast-growing poplar (Populus trichocarpa) wood. Wood Science and Technology 56: 87-109. DOI: 10.1007/s00226-021-01350-1
  • Antczak A., Świerkosz R., Szeniawski M., Marchwicka M., Akus-Szylberg F., Przybysz P., Zawadzki J. [2019]: The comparison of acid and enzymatic hydrolysis of pulp obtained from poplar wood (Populus sp.) by the Kraft method. Drewno 62[203]: 53-66. DOI: 10.12841/wood.1644-3985.D07
  • Antczak A., Ziętek K., Marchwicka M., Tylko B., Gawkowski A., Gawron J., Drożdżek M., Zawadzki J. [2016]: The sugars isolated from fast-growing poplar biomass (Populus sp.) as a raw material for production of bioethanol. Przemysł Chemiczny 95[9]: 1770-1773. DOI: 10.15199/62.2016.9.23
  • Baruah J., Nath B.K., Sharma R., Kumar S., Deka R.C., Baruah D.C., Kalita E. [2018]: Recent Trends in the Pretreatment of Lignocellulosic Biomass for Value- Added Products. Frontiers in Energy Research 6: 141. DOI: 10.3389/FENRG.2018.00141
  • Bay M.S., Karimi K., Esfahany M.N., Kumar R. [2020]: Structural modification of pine and poplar wood by alkali pretreatment to improve ethanol production. Industrial Crops and Products 152: 112506. DOI: 10.1016/j.indcrop.2020.112506
  • Bhagia S., Li H., Gao X., Kumar R., Wyman C.E. [2016]: Flowthrough pretreatment with very dilute acid provides insights into high lignin contribution to biomass recalcitrance. Biotechnology for Biofuels 9: 245. DOI: 10.1186/s13068-016-0660-5
  • Bodîrlău R., Teacă C. A., Spiridon I. [2008]: Chemical modification of beech wood: effect on thermal stability. BioResources 3 [3]: 789-800
  • Cao G., Ren N., Wang A., Lee D.J., Guo W., Liu B., Yujie F., Zhao Q. [2009]: Acid hydrolysis of corn stover for biohydrogen production using Thermoanaerobacterium thermosaccharolyticum W16. International Journal of Hydrogen Energy 34: 7182-7188. DOI: 10.1016/j.ijhydene.2009.07.009
  • Cardona E., Rios J., Peña J., Rios L. [2014]: Effects of the pretreatment method on enzymatic hydrolysis and ethanol fermentability of the cellulosic fraction from elephant grass. Fuel 118: 41-47. DOI: 10.1016/j.fuel.2013.10.055
  • Dąbkowska-Susfał K. [2020]: Efficiency of Corn and Poplar Biomass Saccharification after Pretreatment with Potassium Hydroxide. Ecological Chemistry and Engineering 27: 41-53. DOI: 10.2478/eces-2020-0002
  • El Hage M., Rajha H.N., Maache-Rezzoug Z., Koubaa M., Louka N. [2022]: Intensification of Bioethanol Production from Different Lignocellulosic Biomasses, Induced by Various Pretreatment Methods: An Updated Review. Energies 15: 6912. DOI: 10.3390/en15196912
  • El-Naggar N.E.A., Deraz S., Khalil A. [2014]: Bioethanol Production from Lignocellulosic Feedstocks Based on Enzymatic Hydrolysis: Current Status and Recent Developments. Biotechnology 13: 1-21. DOI: 10.3923/BIOTECH.2014.1.21
  • Fehér A., Fehér C., Rozbach M., Barta Z. [2017]: Combined Approaches to Xylose Production from Corn Stover by Dilute Acid Hydrolysis. Chemical and Biochemical Engineering Quarterly 31[1]: 77-87. DOI: 10.15255/CABEQ.2016.913
  • Fengel D., Wegener G. [2003]: Wood. Chemistry, ultrastructure, reactions. VK, Remagen
  • Gawron J., Antczak A., Borysiak S., Zawadzki J., Kupczyk A. [2014]: The study of glucose and xylose kontent by acid hydrolysis of ash wood (Fraxinus Excelsior L.) after thermal modification in nitrogen by HPLC method. BioResources 9: 3197-3210
  • Imman S., Laosiripojana N., Champreda V. [2018]: Effects of liquid hot water pretreatment on enzymatic hydrolysis and physicochemical changes of corncobs. Applied Biochemistry and Biotechnology 184: 432-443. DOI:10.1007/s12010-017-2541-1
  • Janga K.K., Hägg M-B., Moe S.T. [2012]: Influence of acid concentration, temperature, and time on decrystallization in two-stage concentrated sulfuric acid hydrolysis of pinewood and aspen wood: a statistical approach. BioResources 7[1]: 391-411
  • Jimenez-Gutierrez J.M., Verlinden R.A.J., van der Meer P.C., van der Wielen L.A.M., Straathof A.J.J. [2021]: Liquid Hot Water Pretreatment of Lignocellulosic Biomass at Lab and Pilot Scale. Processes 9: 1518. DOI: 10.3390/pr9091518
  • Jönsson L.J., Alriksson B., Nilvebrant N.O. [2013]: Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnology for Biofuels 61[6]: 1-10. DOI: 10.1186/1754-6834-6-16
  • Kačik F., Solár R. [1999]: Analiticka chemia dreva. TU, Zwoleń
  • Kim Y., Mosier N.S., Ladisch M.R. [2009]: Enzymatic digestion of liquid hot water pretreated hybrid poplar. Biotechnology Progress 25[2]: 340-348. DOI: 10.1002/btpr.137
  • Ko J., Kim Y., Ximenes E., Ladisch M. [2015a]: Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose. Biotechnology and Bioengineering 112[2]: 252-262. DOI: 10.1002/bit.25349
  • Ko J., Ximenes E., Kim Y., Ladisch, M. [2015b]: Adsorption of enzyme onto lignins of liquid hot water pretreated hardwoods. Biotechnology and Bioengineering 112[3]: 447-456. DOI: 10.1002/bit.25359
  • Kratky L., Jirout T. [2011]: Biomass size reduction machines for enhancing biogas production. Chemical Engineering and Technology 34: 391-399. DOI: 10.1002/ceat.201000357
  • Kumar P., Marrett D.M., Delwiche M.J., Stroeve P. [2009]: Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial and Engineering Chemistry Research 48[8]: 3713-3729. DOI: 10.1021/ie801542g
  • Lee Y.Y., Iyer P., Torget R.W. [1999]: Dilute-acid hydrolysis of lignocellulosic biomass. Advanced in Biochemical Engineering/Biotechnology 63: 94-115. DOI: 10.1007/3-540-49194-5_5
  • Li M., Cao S., Meng X., Studer M., Wyman C.E., Ragauskas A.J., Pu Y. [2017]: The effect of liquid hot water pretreatment on the chemical–structural alteration and the reduced recalcitrance in poplar. Biotechnology for Biofuels 10: 237. DOI: 10.1186/s13068-017-0926-6
  • Li X., Lu J., Zhao J., Qu Y. [2014]: Characteristics of corn stover pretreated with liquid hot water and fed-batch semi-simultaneous saccharification and fermentation for bioethanol production. PLoS One 9: e95455. DOI: 10.1371/journal.pone.0095455
  • Lu J., Li X.Z., Zhao J., Qu Y. [2012]: Enzymatic saccharification and ethanol fermentation of reed pretreated with liquid hot water. Journal of Biomedicine and Biotechnology 2012: 1-9. DOI: 10.1155/2012/276278
  • Lu X., Yamauchi K., Phaiboonsilpa N., Saka S. [2009]: Two-step hydrolysis of Japanese beech as treated by semi-flow hot-compressed water. Journal of Wood Science 55[5]: 367-375. DOI: 10.1007/s10086-009-1040-6
  • Lu X., Zheng X., Li X., Zhao J. [2016]: Adsorption and mechanism of cellulase enzymes onto lignin isolated from corn stover pretreated with liquid hot water. Biotechnology for Biofuels 9: 118-129. DOI: 10.1186/s13068-016-0531-0
  • Marks C., Viell J. [2021]: Acetosolv pretreatment of Wood for biorefinery applications. Biomass Conversion and Biorefinery. DOI: 10.1007/s13399-021-02023-6
  • Michelin M., Teixeira J.A. [2016]: Liquid hot water pretreatment of multifeedstocks and enzymatic hydrolysis of solids obtained thereof. Bioresource Technology 216: 862-869. DOI: 10.1016/j.biortech.2016.06.018
  • Mosier N., Wyman C.E., Dale B.D., Elander R.T., Lee Y.Y., Holtzapple M., Ladisch C.M. [2005]: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology 96: 673-686. DOI: 10.1016/j.biortech.2004.06.025
  • Mouthier T., Appeldoorn M.M., Pel H., Schols H.A., Gruppen H., Kabel M.A. [2018]: Corn stover lignin is modified differently by acetic acid compared to sulfuric acid. Industrial Crops and Products 121: 160-168. DOI: 10.1016/j.indcrop.2018.05.008
  • Nlewem K.C., Thrash M.E. [2010]: Comparison of different pretreatment methods based on residual lignin effect on the enzymatic hydrolysis of switchgrass. Bioresource Technology 101[14]: 5426-5430. DOI: 10.1016/j.biortech.2010.02.031
  • Prosiński S. [1984]: Wood Chemistry. State Agricultural and Forest Publishing House, Warsaw
  • Pu Y., Hu F., Huang F., Ragauskas A.J. [2015]: Lignin Structural Alterations in Thermochemical Pretreatments with Limited Delignification. Bioenergy Research 8: 992-1003. DOI: 10.1007/s12155-015-9655-5
  • Seifert K. [1960]: Zur frage der cellulose-schnellbestimmung nach der acetylaceton-methode. Das Papier 14[3]: 104-106
  • Shi Y., Yokoyama T., Akiyama T., Yashiro M., Matsumoto Y. [2012]: Degradation kinetics of monosaccharides in hydrochloric, sulfuric and sulfurous acid. BioResources 7 [3]: 4085-4097
  • Shi F., Wang Y., Davaritouchaee M., Yao Y., Kang K. [2020]: Directional structure modification of poplar biomass-inspired high efficacy of enzymatic hydrolysis by sequential dilute acid−alkali treatment. ACS Omega 5[38]: 24780-24789. DOI: 10.1021/acsomega.0c03419
  • Shinde S.D., Meng X., Kumar R., Ragauskas A.J. [2018]: Recent advances in understanding the pseudo-lignin formation in a lignocellulosic biorefinery. Green Chemistry 20: 2192-2205. DOI: 10.1039/C8GC00353J
  • Siripong P., Duangporn P., Takata E., Tsutsumi Y. [2016]: Phosphoric acid pretreatment of Achyranthes aspera and Sida acuta weed biomass to improve enzymatic hydrolysis. Bioresource Technology 203: 303-308. DOI: 10.1016/j.biortech.2015.12.037
  • Sjulander N., Kikas T. [2022]: Two-Step Pretreatment of Lignocellulosic Biomass for High-Sugar Recovery from the Structural Plant Polymers Cellulose and Hemicellulose. Energies 15: 8898. DOI: 10.3390/en15238898
  • Sluiter A., Ruiz R., Scarlata C., Sluiter J., Templeton D. [2008]: Determination of extractives in biomass (NREL/TP-510-42619). National Renewable Energy Laboratory, Golden, CO
  • Sun Y., Yang G., Jia ZH., Wen Ch., Zhang L. [2014]: Acid hydrolysis of corn stover using hydrochloric acid: kinetic modelling and statistical optimization. Chemical Industry and Chemical Engineering Quarterly 20[4]: 531-539. DOI: 10.2298/CICEQ130911035S
  • TAPPI T222 om-02 [2006]: Acid-insoluble lignin in Wood and pulp. TAPPI Press, Atlanta
  • Tomás-Pejó E., Alvira P., Ballesteros M., Negro M.J. [2011]: Pretreatment technologies for lignocelluloseto-bioethanol conversion, Elsevier Inc., Amsterdam
  • Trzcinski A.P., Stuckey D.C. [2015]: Contribution of acetic acid to the hydrolysis of lignocellulosic biomass under abiotic conditions. Bioresource Technology 185: 441-444. DOI: 10.1016/j.biortech.2015.03.016
  • Uçar G. [1990]: Pretreatment of poplar by acid and alkali for enzymatic hydrolysis. Wood Science and Technology 24: 171-180. DOI: 10.1007/BF00229052
  • Qiao H., Cui J., Ouyang S., Shi J., Ouyang J. [2019]: Comparison of Dilute Organic Acid Pretreatment and a Comprehensive Exploration of Citric Acid Pretreatment on Corn Cob. Journal of Renewable Materials 7 [11]: 1197-1207. DOI: 10.32604/jrm.2019.07735
  • Yang F., Afzal W., Cheng K., Liu N., Pauly M., Bell A.T., Liu Z., Prausnitz J.M. [2015]: Nitric-acid hydrolysis of Miscanthus giganteus to sugars fermented to bioethanol. Biotechnology and Bioprocess Engineering 20: 304-314. DOI: 10.1007/s12257-014-0658-4
  • Wang W., Wang X., Zhang Y., Yu Q., Tan X., Zhuang X., Yuan Z. [2020]: Effect of sodium hydroxide pretreatment on physicochemical changes and enzymatic hydrolysis of herbaceous and woody lignocelluloses. Industrial Crops and Products 145: 112145. DOI: 10.1016/J.INDCROP.2020.112145
  • Wilk M., Krzywonos M. [2015]: Methods for pretreatment of lignocellulose raw materials in second-generation bioethanol production. Przemysł Chemiczny 94 [4]: 599-604. DOI: 10.15199/62.2015.4.20
  • Wise L.E., Murphy M., D'Addieco A.A. [1946]: Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses.Paper Trade Journal 122: 35-43
  • Woiciechowski A.L., Neto C.J.D., Vandenberghe L.P.S.,Neto D.P.C., Novak- Sydney A.C., Letti L.A.J., Karp S.G., Zevallos-Torres L.A., Soccol C.R. [2020]: Lignocellulosic biomass: Acid and alkaline pretreatments and their effects on biomass recalcitrance – Conventional processing and recent advances. Bioresource Technology 304: 122848.
  • Zborowska M., Waliszewska H., Waliszewska B., Borysiak S., Brozdowski J., Stachowiak-Wencek A. [2022]: Conversion of Carbohydrates in Lignocellulosic Biomass after Chemical Pretreatment. Energies 15: 254. DOI: 10.3390/en15010254
  • Zheng Q., Zhou T., Wang Y., Cao X., Wu S., Zhao M., Wang H., Xu M., Zheng B., Zheng J., Guan X. [2018]: Pretreatment of wheat straw leads to structural changes and improved enzymatic hydrolysis. Scientific Reports 81 [8]: 1-9. DOI:10.1038/s41598-018-19517-5
  • List of standards
  • PN-92/P-50092 Surowce dla przemysłu papierniczego. Drewno. Analiza chemiczna (Raw materials for the paper industry. Wood. Chemical analysis)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ddf03746-afc8-4599-92fd-835400e756c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.