PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pressure distribution in a squeeze film spherical bearing with rough surfaces lubricated by an ellis fluid

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the solution to a problem of pressure distribution in a curvilinear squeeze film spherical bearing is considered. The equations of motion of an Ellis pseudo-plastic fluid are presented. Using Christensen’s stochastic model of rough surfaces, different forms of Reynolds equation for various types of surface roughness pattern are obtained. The analytical solutions of these equations for the cases of externally pressurized bearing and squeeze film bearing are presented. Analytical solutions for the film pressure are found for the longitudinal and circumferential roughness patterns. As a result the formulae expressing pressure distribution in the clearance of bearing lubricated by an Ellis fluid was obtained. The numerical considerations for a spherical bearing are given in detail.
Rocznik
Strony
593--610
Opis fizyczny
Bibliogr. 39 poz., wykr.
Twórcy
autor
  • University of Zielona Góra, Faculty of Mechanical Engineering ul. Szafrana 2, P.O.Box 47, 65-516 Zielona Góra, POLAND
autor
  • University of Zielona Góra, Faculty of Mechanical Engineering ul. Szafrana 2, P.O.Box 47, 65-516 Zielona Góra, POLAND
Bibliografia
  • [1] Covey G.H. and Stanmore B.R. (1981): Use of the parallel-plate plastometer for the characterisation of viscous fluids with a yield stress. – J. Non-Newton. Fluid Mech. vol.8, pp.249–260.
  • [2] Dai G. and Bird R.B. (1981): Radial flow of Bingham fluid between two fixed circular disks. – J. Non-Newton. Fluid Mech. vol.8, pp.349–355.
  • [3] Lipscomb C.C. and Denn M.M. (1984): Flow of Bingham fluids in complex geometries. – J. Non-Newt. Fluid Mech., vol.14, No.3, pp.337-349.
  • [4] Walicki E. and Walicka A. (1998): Mathematical modelling of some biological bearings. – Smart Materials and Structures, Proc. 4th European and 2nd MiMR Conference, Harrogate, UK, 6-8 July 1998, pp.519-525.
  • [5] Dorier C. and Tichy J. (1992): Behaviour of a Bingham-like viscous fluid in lubrication flows. – J. Non-Newt. Fluid Mech., vol.45, No.3, pp.291-350.
  • [6] Wada S. and Hayashi H. (1971): Hydrodynamic lubrication of journal bearings by pseudo-plastic lubricants, (Pt 1, Theoretical studies). – Bull. JSME, vol.14, No.69, pp.268-278.
  • [7] Wada S. and Hayashi H. (1971): Hydrodynamic lubrication of journal bearings by pseudo-plastic lubricants. (Pt 2, Experimental studies). – Bull. JSME, vol.14, No.69, pp.279-286.
  • [8] Swamy S.T.N., Prabhu B.S. and Rao B.V.A. (1975): Stiffness and damping characteristics of finite width journal bearing with a non-Newtonian film and their application to instability prediction. – Wear, vol.32, pp.379-390.
  • [9] Rajalingham C., Rao B.V.A. and Prabu S. (1978): The effect of a non-Newtonian lubricant on piston ring lubrication. – Wear, vol.50, pp.47-57.
  • [10] Walicka A. (2002): Rotational Flows of Rheologically Complex Fluids in Thin Channels (in Russian). – Zielona Gora: University Press.
  • [11] Walicki E. (2005): Rheodynamics of Slide Bearings Lubrication (in Polish). – Zielona Gora: University Press.
  • [12] Walicka A. (1994): Micropolar Flow in a Slot Between Rotating Surfaces of Revolution. – Zielona Góra: TU Press.
  • [13] Walicki E. and Walicka A. (1998): Mathematical modelling of some biological bearings. – Smart Materials and Structures, Proc. 4th European and 2nd MiMR Conference, Harrogate, UK, 6-8 July 1998, pp.519-525.
  • [14] Khonsari M.M. and Dai F. (1992): On the mixture flow problem in lubrication of hydrodynamic bearing: small solid volume fraction. – STLE Trib. Trans., vol.35, No.1, pp.45-52.
  • [15] Agrawal V.K. (1970): Effect of lubricant inertia on squeeze film in spherical bearing. – Jap. J. Appl. Phys., vol.9, No.7, pp.831-833.
  • [16] Gould F. (1975): High-pressure spherical squeeze films. – J. Lubric. Technol. Trans. ASME, ser. F, vol.97, No.1, pp.207-208.
  • [17] Murti P.R.K. (1975): Squeeze film in curved circular plates. – J. Lubric. Technol. Trans. AME, ser F, vol.97, No.4, pp.650-654.
  • [18] Vora K.H. (1980): Behaviour of squeeze film between curved circular plates with a concentric circular pocket. – Wear, vol.65, pp.35-38.
  • [19] Walicka A. (1989): Accurate and Asymptotic Solution of Simplified Sets of Equations Describing the Motion of Viscous Fluids in a Slot Bounded by Two Co-axial Surfaces of Revolution (in Polish). – Warszawa: PWN.
  • [20] Christensen H. (1970): Stochastic model for hydrodynamic lubrication of rough surfaces. – Proc. Inst. Mech. Engrs, vol.184, pt 1, pp.1013-1022.
  • [21] Bujurke N.M., Kudenatti R.B. and Awati V.B. (2007): Effect of surface roughness on squeeze film poroelastic bearings with special reference to synovial joints. – Mathematical Biosciences, vol.209, pp.76-89.
  • [22] Lin J.-R. (2000): Surfaces roughness effect on the dynamic stiffness and damping characteristics of compensated hydrostatic thrust bearings. – Int. J. Machine Tools Manufact., vol.40, pp.1671-1689.
  • [23] Lin J.-R. (2001): The effect of couple stresses in the squeeze film behavior between isotropic rough rectangular plates. – Int. J. Appl. Mech. Eng., vol.6, No.4, pp.1007-1024.
  • [24] Prakash J. and Tiwari K. (1984): An analysis of the squeeze film between rough porous rectangular plates with arbitrary porous wall thickness. – Journal of Tribology, Trans. ASME, vol.106, No.2, pp.218-222.
  • [25] Prakash J. and Tiwari K. (1985): Effects of surface roughness on the squeeze film between rectangular porous annular disc with arbitrary porous wall thickness. – Int. J. Mech. Sci., vol.27, No.3, pp.135-144.
  • [26] Walicka A. (2009): Surface roughness effects in a curvilinear squeeze film bearing lubricated by a power-law fluid. – Int. J. Appl. Mech. Engng, vol.14, No.1, pp.277-293.
  • [27] Walicka A. (2012): Porous curvilinear squeeze film bearing with rough surfaces lubricated by a power-law fluid. – Journal of Porous Media, vol.15, No.1, pp.29-49.
  • [28] Walicka A. and Walicki E. (2002): Surface roughness effect on the pressure distribution in curvilinear thrust bearings. – Exploitation Problems of Machines, vol.131, No.3, pp.157-167.
  • [29] Walicka A. and Walicki E. (2002): Couple stress and surface roughness effects in curvilinear thrust bearings. – Int. J. Appl. Mech. Engng, vol.7, Spec. Issue: SITC, pp.109-117.
  • [30] Gururajan K. and Prakash J. (1999): Surface roughness effects in infinitely long porous journal bearing. – Journal of Tribology, Trans. ASME, vol.121, No.1, pp.139-147.
  • [31] Ellis S.B. (1927): Thesis, Lafayette College, Pa. Citted in: Matsuhisa S., Bird R.B. (1965): Analytical and numerical solutions for laminar flow of the Non-Newtonian Elis fluid. – AiChE Journal, pp.588-595.
  • [32] Rotem Z. and Shinnar R. (1961): Non-Newtonian flow between parallel boundaries in linear movements. – Chem. Eng. Sie., vol.15, pp.130-143.
  • [33] Walicka A. (2002a): Rheodynamics of Non-Newtonian Fluids Flow in Straight and Curved Channels (in Polish), – Zielona Gora: University Press.
  • [34] Walicki E. (1977): Viscous Fluid Flow in Slots of Thrust Bearings. – Bydgoszcz: AT-R. Press.
  • [35] Christensen H. and Tønder K. (1971): The hydrodynamic lubrication of rough bearing surfaces of finite width. – ASME, J. Lubric. Technol., vol.93, No.2, pp.324-330.
  • [36] Christensen H. and Tønder K. (1973): The hydrodynamic lubrication of rough journal bearings. – ASME, J. Lubric. Technol., vol.95, No.1, pp.166-172.
  • [37] Whorlow R.W. (1992): Rheological Techniques (Sec. Edition). – Ellis Horwood, New York.
  • [38] Walicka, A., Walicki, E. and Ratajczak, M. (1999): Pressure distribution in a curvilinear thrust bearing with pseudo-plastic lubricant. – Appl. Mech. Enging. 4 (sp. Issue), pp.81-88.
  • [39] Walicka, A., Walicki, E. and Ratajczak, M. (2000): Rotational inertia effects in a pseudo-plastic fluid flow between non-coaxial surfaces of revolution. – Proc. 4th Minsk Int. Heat Mass Transfer Forum (May 22-27, 2000 Minsk Belarus), pp.19-29.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ddeba888-11e2-490a-94b3-27522c314ef3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.