PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biomass as a Renewable Source of Energy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper state of art on known and potential biomass sources is reviewed. The review will consider energy dedicated crops and waste types that are already applied for clean energy purposes as well as potential ones. The resources can be applied for biofuels, bioethanol, methane, hydrogen production by means of various processes (methane fermentation, pyrolysys etc). The environmental and economical benefits of biomass application as a renewable energy source are also described.
Słowa kluczowe
Rocznik
Tom
Strony
211--220
Opis fizyczny
Bibliogr. 40 poz., wykr.
Twórcy
autor
  • Katedra Podstaw Bezpieczeństwa, Uniwersytet Warmińsko-Mazurski, ul. Heweliusza 10, 10-718 Olsztyn, phone: +48 89 524 56 12
autor
  • Chair of Foundations of Safety, University of Warmia and Mazury in Olsztyn
autor
  • Chair of Food Biotechnology, University of Warmia and Mazury in Olsztyn
autor
  • Chair of Agricultural Chemistry and Environmental Protection University of Warmia and Mazury in Olsztyn
  • Chair of Foundations of Safety, University of Warmia and Mazury in Olsztyn
Bibliografia
  • ACAROGLU M., AKSOY A.S. 2005. The cultivation and energy balance of Miscanthus x giganteus production in Turkey. Biomass and Bioenergy, 29: 42–48.
  • ANGELINI L.G., CECCARINI L., NASSI O DI NASSO N., BONARI E. 2009. Comparison of Arundo donax L. and Miscanthus x giganteus in a long term field experiment in Central Italy: Analysis of productive characteristics and energy balance. Biomass and Bioenergy, 33: 635–643.
  • BANOS R., MANZANO-AGUGLIARO F., MONTOYA F.G., GIL C., ALCAYDE A., GÓMEZ J. 2011. Optimization methods applied to renewable and sustainable energy: A review. Renewable and Sustainable Energy Reviews, 15: 1753–1766.
  • COPELAND N., CAPE J.N., HEAL M.R. 2012. Volatile organic compound emissions from Miscanthus and short rotation coppice willow bioenergy crops. Atmospheric Environment, 60: 327–335.
  • CURKOWSKI A., ONISZK-POPŁAWSKA A., MROCZKOWSKI P., ZOWSIK M., WIŚNIEWSKI G. 2011. Przewodnik dla inwestorów zainteresowanych budową biogazowni rolniczych. Instytut Energii Odnawialnej, Warszawa.
  • DEMIRBAS A. 2008. Importance of biomass energy sources for Turkey. Energy Policy, 36: 834–842.
  • DODIĆ S.N., ZEKIĆ V.N., RODIĆ V.O., TICA N.L., DODIĆ J.M., POPOV S.D. 2010. Situation and perspectives of waste biomass application as an energy source in Serbia. Renewable and Sustainable Energy Reviews, 14: 3171–3177.
  • DODIĆ S.N., ZELENOVIĆ VASILJEVIĆ T., MARIĆ R.M., KOSANOVIĆ A.J.R., DODIĆ J.M., POPOV S.D. 2012. Possibilities of application of waste wood biomass as an energy source in Vojvodina. Renewable and Sustainable Energy Reviews, 16: 2355–2360.
  • Energy from renewable sources 2011. 2012. GUS, Warsaw, on line: http://www.stat.gov.pl/gus/5840–3680–PLK–HTML.htm (available: 15.12.2012).
  • FILLION M., BRISSON J., TEODORESCU T.I., SAUVE S., LABRECQUE M. 2009. Performance of Salix viminalis and Populus nigra x Populus maximowiczii in short rotation intensive culture under high irrigation. Biomass and Bioenergy, 33: 1271–1277.
  • GUNASEELAN V.N. 1997. Anaerobic digestion of biomass for methane production: a review. Biomass and Bioenergy, 13(1/2): 83–114.
  • HOWANIEC N., SMOLIŃSKI A. 2011. Steam gasification of energy crops of high cultivation potential in Poland to hydrogen-rich gas. International Journal of Hydrogen Energy, 36: 2038–2043.
  • JAMA A., NOWAK W. 2012. Willow (Salix viminalis L.) in purifying sewage sludge treated soils. Polish Journal of Agronomy, 9: 3–6.
  • JUNG K.W., KIM D.H., SHIN H.S. 2012. Continuous fermentative hydrogen and methane production from Laminaria japonica using a two-stage fermentation system with recycling of methane fermented effluent. International Journal of Hydrogen Energy, 37: 15648–15657.
  • KAPDAN I.K., KARGI F. 2006. Bio-hydrogen production from waste materials. Enzyme and Microbial Technology, 38: 569–582.
  • KELLY-YONG T.L., LEE K.T., MOHAMED A.R., BHATIA S. 2007. Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide. Energy Policy, 35: 5692–5701.
  • KIM S.H. CHEON H.C., LEE C.Y. 2012. Enhancement of hydrogen production by recycling of methanogenic effluent in two-phase fermentation of food waste. International Journal of Hydrogen Energy, 37: 13777–13782.
  • KLUDZE H., DEEN B., DUTTA A. 2012. Impact of agronomic treatments on fuel characteristics of herbaceous biomass for combustion. Fuel Processing Technology, on line: http://ac.elscdn.com/S0378382012003694/1-s2.0-S0378382012003694-main.pdf?–tid=a316d14e-58c1-11e2-82a7-00000aab0f6b acdnat=1357560126–7438d4a82859fd0f3bc9509cd2678a0a (accessible 27.12.2012).
  • LIM J.S.,MANAN Z.A., ALWI S.R.W.,HASHIM H. 2012. A review on utilization of biomass fromrice industry as a source of renewable energy. Renewable and Sustainable Energy Reviews, 16: 3084–3094.
  • LIU Z.X., HAN L.P., STEINBERGER Y., XIE G.H. 2011. Genetic variation and yield performance of Jerusalem artichoke germplasm collected in China. Agricultural Sciences in China, 10(5): 668–678.
  • LUSTRATO G., ALFANO G., RANALLI G. 2012. Bio-hydrogen and bio-methane co-production by sequential two-phases dark fermentation from agro-industrial wastes (IMERA). Environmental Engineering and Management Journal, 11(3–Suplement): S76.
  • MANT C., PETERKIN J., MAY E., BUTLER J. 2003. A feasibility study of Salix viminalis gravel hydroponic system to renovate primary settled wastewater. Bioresource Technology, 90: 19–25.
  • MARMIROLI M., ROBINSON B.H., CLOTHIER B.E., BOLAN N.S., MARMIROLI N., SCHULIN R. 2012. Effect of dairy effluent on the biomass, transpiration, and elemental composition of Salix kinuyanagi Kimura. Biomass and Bioenergy, 37: 282–288.
  • MATIAS J., GONZALES J., ROYANO L., BARRENA L.A. 2011. Analysis of sugars by liquid chromatographymass spectrometry in Jerusalem artichoke tubers for bioethanol production optimization. Biomass and Bioenergy, 35: 2006–2012.
  • MATSAKAS L., CHRISTAKOPOULOS P. 2013. Fermentation of liquefacted hydrothermally pretreated sweet sorghum bagasse to ethanol at high-solids content. Bioresource Technology, 127: 202–208.
  • MEKI M.N., SNIDER J.L., KINIRY J.R., RAPER R.L., ROCATELI A.C. 2013. Energy sorghum biomass harvest thresholds and tillage effects on soil organic carbon and bulk density. Industrial Crops and Products, 43: 172–182.
  • MOHAMMED M.A.A., SALMIATON A., WAN AZLINA W.A.K.G., MOHAMMAD AMRAN A.S., FAKHRU’L-RAZI A., TAUFIQ-YAP Y.H. 2011. Hydrogen rich gas from oil palm biomass as a potential source of renewable energy in Malaysia. Renewable and Sustainable Energy Reviews, 15: 1258–1270.
  • OLGUIN E.J., DOELLE H.W., MERCADO G. 1995. Resource recovery through recycling of sugar processing by-products and residuals. Resources Conservation and Recycling, 15: 85–94.
  • PARK H.J., PARK K.H., JEON J.K., KIM J., RYOO R., JEONG K.E., PARK S.H., PARK Y.K. 2012. Production of phenolics and aromatics by pyrolysis of miscanthus. Fuel, 97: 379–384.
  • REN L.T., LIU Z.X., WEI T.Y., XIE G.H. 2012. Evaluation of energy input and output of sweet sorghum grown as a bioenergy crop on coastal saline-alkali land. Energy, 47: 166–173.
  • SAYIGH A. 2012. Renewable energy: The only solution. International Journal of Environment and Sustainability, 1(3): 83–86.
  • SHUIT S.H., TAN K.T., LEE K.T., KAMARUDDIN A.H. 2009. Oil palm biomass as a sustainable energy source: A Malaysian case study. Energy, 34: 1225–1235.
  • STOLARSKI M. 2003. Wszystko o wierzbie. Czysta Energia, 25(10): 32–33.
  • SUNTANA A.S., VOGT K.A., TURNBLOM E.C., UPADHYE R. 2009. Bio-methanol potential in Indonesia: Forest biomass as a source of bio-energy that reduces carbon emissions. Applied Energy, 86: 215–221.
  • TAHVANAINEN L., RYTKONEN V.M. 1999. Biomass production of Salix viminalis in southern Finland and the effect of soil properties and climate conditions on its production and survival. Biomass and Bioenergy, 16: 103–117.
  • VENTURI P., GIGLER J.K., HUISMAN W. 1999. Economical and technical comparison between herbaceous (Miscanthus x giganteus) and woody energy crops (Salix viminalis). Renewable Energy, 16: 1023–1026.
  • WANG L., LUO Z., SHAHBAZI A. 2013. Optimization of simultaneous saccharification and fermentation for the production of ethanol from sweet sorghum (Sorghum bicolor) bagasse using response surface methodology. Industrial Crops and Products, 42: 280–291.
  • WU W. 2007. Anaerobic co-digestion of biomass for methane production: recent research achievements. Iowa State University. On line: home.eng.iastate.edu/~tge/ce421-521/wei.pdf (available: 6.12.2012).
  • ZAGORSKIS A., BALTRENAS P., MISEVICIUS A., BALTRENAITE E. 2012. Biogas production by anaerobic treatment of waste mixture consisting of cattle manure and vegetable remains. Environmental Engineering and Management Journal, 4: 849–856.
  • ZIEMIŃSKI K., FRĄC M. 2012. Methane fermentation process as an anaerobic digestion of biomass: Transformations, stages and microorganisms. African Journal of Biotechnology, 11(18): 4127–4139.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ddeb4e2d-89b2-4457-94a3-9ed6ef89dbc5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.