PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evolution of the microstructure and mechanical properties of Sanicro 25 austenitic stainless steel after long-term ageing

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A newly developed heat-resistant austenitic steel, Sanicro 25 is currently considered the leading candidate material for an advanced ultra-supercritical installation. The test material was subjected to long-term ageing (up to 30,000 h) at 700 and 750 °C, after which investigations into the microstructure, identification of precipitates, and testing of mechanical properties were conducted. Sanicro 25 had an austenitic microstructure with annealed twins and numerous large primary NbX and Z-phase precipitates in the as-received condition. It was found that the long-term ageing of the steel resulted in numerous precipitation processes. For example, M23C6 carbides, Laves, σ and G phases occurred at the grain boundaries. However, Z-phase precipitates, ε_Cu particles, and Laves phase were observed inside the grains. At the same time, compound complexes of precipitates based on the primary Z-phase precipitates were revealed in the microstructure. The ageing process increased the particle size of M23C6 carbides and the σ phase. After longer ageing times, a precipitate-free zone (PFZ) near the grain boundaries was observed. The precipitation processes initially lead to an increase in the strength properties of the steel. However, after 5000 h, an over-ageing effect was observed at 750 °C, which was not observed at 700 °C.
Rocznik
Strony
art. no. e149, 2023
Opis fizyczny
Bibliogr. 32 poz., rys., wykr.
Twórcy
autor
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, Ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Łukasiewicz Research Network - Institute for Ferrous Metallurgy, K. Miarki 12-14, 44-100 Gliwice, Poland
autor
  • Department of Materials Engineering, Czestochowa University of Technology, Al. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
  • Materials Research Laboratory, Silesian University of Technology, Ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Łukasiewicz Research Network - Institute for Ferrous Metallurgy, K. Miarki 12-14, 44-100 Gliwice, Poland
autor
  • Department of Materials Engineering, University of Zilina, Univerzitná, 8215/1, 010 26 Žilina, Slovakia
Bibliografia
  • 1. Zieliński A, Wersta R, Sroka M. Analysis of the precipitation process of secondary phases after long-term ageing of the S304H steel. Bull Pol Acad Sci-Te. 2021;69(5): e137520. https://doi.org/ 10.24425/bpasts.2021.137520.
  • 2. Golański G, Zieliński A, Sroka M, Słania J. The effect of service on microstructure and mechanical properties of HR3C heat-resist- ant austenitic stainless steel. Materials. 2020;13:1297. https://doi. org/10.3390/ma13061297.
  • 3. Zieliński A, Golański G, Sroka M. Evolution of the microstructure and mechanical properties of HR3C austenitic stainless steel after ageing for up to 30,000 h at 650–750 °C. Mat Sci Eng A-Struct. 2020;796:1394. https://doi.org/10.1016/j.msea.2020.139944.
  • 4. Chai G, Forsberg U. Sanicro 25: An advanced high-strength, heat- resistant austenitic stainless steel. In: Di Gianfrancesco WA, edi- tor. Materials for ultra-supercritical and advanced ultra-supercrit- ical power plants. Woodhead Publishing; 2017. p. 391–421.
  • 5. Calmunger M, Chai G, Johansson S, Moverare J. Creep and fatigue interaction behavior in Sanicro 25 heat resistant austenitic stainless steel. T Indian I Met. 2016;69(2):337–42. https://doi.org/ 10.1007/s12666-015-0806-3.
  • 6. Zurek J, Yang S-M, Lin D-Y, Huttel T, Singheiser L, Quadakkers WJ. Microstructural stability and oxidation behavior of Sanicro 25 during long-term steam exposure in the temperature range 600–750°C. Mater Corros. 2015;66:315–27. https:// doi.org/10. 1002/maco.201407901.
  • 7. Rutkowski B, Gil A, Aguero A, Gonzalez V, Czyrska-Filemonow- icz A. Microstructure, chemical- and phase composition of Sani- cro 25 austenitic steel after oxidation in steam at 700°C. Oxid Met. 2018;89:183–95. https://doi.org/10.1007/s11085-017-9824-3.
  • 8. EN ISO 643 Steels - Micrographic determination of the apparent grain size, 2012.
  • 9. Czempura G, Gil A, Aguero A, Gutierrez M, Kruk A, Czyrska- Filemonowicz A. Microstructural studies of the scale on Sanicro 25 after 25 000 h of oxidation in steam using advanced electron microscopy techniques. Surf Coat Tech. 2019;377:124901. https:// doi.org/10.1016/j.surfcoat.2019.124901.
  • 10. Zhou R, Zhu L, Liu Y, Lu Z, Chen L, Ma X. Microstructural evolution and the effect on hardness of Sanicro 25 welded joint base after creep at 973K. J Mater Sci. 2017;52:6161–72. https:// doi.org/10.1007/s10853-017-0758-6.
  • 11. Zhou R, Zhu L, Yang Y, Lu Z, Chen L. Microstructural evolu- tion and the effect on hardness and impact toughness of Sani- cro 25 welded joints after aging at 973K. Metall Mater Trans A. 2018;49:6290–307. https://doi.org/10.1007/s11661-018-4906-7.
  • 12. Chen AY, Hu WF, Wang D, Zhu YK, Wang P, Yang H, Wang XY, Gu JF, Lu J. Improving the intergranular corrosion resist- ance of austenitic stainless steel by high density twinned struc- ture. Scripta Mater. 2017;13:264–8. https://doi.org/10.1016/j. scriptamat.2016.11.032.
  • 13. Suo J, Peng Z, Yang H, Chai G, Yu M. Formation of Laves phase in Sanicro 25 austenitic steel during creep-rupture test at 700°C. Metallogr Microstruct Anal. 2019;8(2):281–6. https:// doi.org/10.1007/s13632-019-00529-0.
  • 14. Chen SW, Zhang C, Xia ZX, Ishikawa H, Yang ZG. Precipitation behavior of Fe 2 Nb Laves phase on grain boundaries in austenitic heat resistant steels. Mat Sci Eng A-Struct. 2014;615:183–8. https://doi.org/10.1016/j.msea.2014.07.104.
  • 15. Sourmail T. Precipitation in creep resistant austenitic stainless steel. Mater Sci Tech-Lond. 2001;14:1–14. https://doi.org/10. 1179/026708301101508972.
  • 16. Padilha F, Rios PR. Decomposition of austenite in austenitic stainless steels. ISIJ Int. 2002;42(4):325–37. https://doi.org/10. 2355/isijinternational.42.325.
  • 17. Wang JZ, Liu Z-D, Bao H-S, Cheng S-C. Evolution of precipi- tates of S31042 heat resistant steel during 700°C aging. J Iron Steel Res Int. 2013;20:113–21. https://doi.org/10.1016/s1006- 706x(13)60186-7.
  • 18. Purzynska H, Golański G, Zieliński A, Dobrzański J, Sroka M. Precipitation study in Ti-stabilized austenitic stainless steel after 207000 h of service. Mater High Temp. 2019;36:296–303. https://doi.org/10.1080/09603409.2018.1546919.
  • 19. Vaché N, Steyer P, Duret-Thual C, Perez M, Douillard T, Rauch E, Véron M, Renou G, Dupoiron F, Augustin C, Cazottes S. Microstructural study of the NbC to G-phase transformation in HP-Nb alloys. Materialia. 2020;9:100593. https://doi.org/10. 1016/j.mtla.2020.100593.
  • 20. Chi C, Yu H, Dong J, Liu W, Cheng S, Liu Z, Xie X. The pre- cipitation strengthening behavior of Cu-rich phase in Nb con- tained advanced Fe–Cr–Ni type austenitic heat resistant steel for USC power plant application. Prog Nat Sci. 2012;22(3):175–85. https://doi.org/10.1016/j.pnsc.2012.05.002.
  • 21. Zhou R, Zhu L. Growth behavior and strengthening mechanism of Cu-rich particles in Sanicro 25 austenitic heat-resistant steel after aging at 973 K. Mat Sci Eng A-Struct. 2020;796:1373. https://doi.org/10.1016/j.msea.2020.139973.
  • 22. Li Y, Liu Y, Liu Ch, Li Ch, Li H. Mechanism for the formation of Z-phase in 25Cr-20Ni-Nb-N austenitic stainless steel. Mater Lett. 2018;233:16–9. https://doi.org/10.1016/j.matlet.2018.08. 141.
  • 23. Chiu Y-T, Lin C-K. Effects of Nb and W additions on high-tem- perature creep properties of ferritic stainless steels for solid oxide fuel cell interconnect. J Power Sour. 2012;198:149–57. https://doi. org/10.1016/j.jpowsour.2011.09.056.
  • 24. Sawada K, Hatakeyama T, Sekido K, Kimura K. Microstructural changes and creep-strength degradation in 18Cr-9Ni-3Cu-Nb-N steel. Mater Charact. 2021;178:111286. https://doi.org/10.1016/j. matchar.2021.111286.
  • 25. Liu H, Wei L, Ma M, Zheng J, Chen L, Misra RDK. Laves phase precipitation behavior and high-temperature strength of W-con- taining ferritic stainless steel. J Mater Res Tech. 2020;9:2127–35. https://doi.org/10.1016/j.jmrt.2019.12.043.
  • 26. Lütjering G, Albrecht J, Sauer C, Krull T. The influence of soft, precipitate- free zones at grain boundaries in Ti and Al alloys on their fatigue and fracture behavior. Mat Sci Eng A-Struct. 2007;468–470:201–9. https:// doi. org/ 10. 1016/j. msea. 2006. 07. 168.
  • 27. Ryum N. The influence of a precipitate-free zone on the mechanical properties of an Al-Mg-Zn alloy. Acta Metall Mater. 1968;16:327–322. https:// doi. org/ 10. 1016/ 0001- 6160(68) 90018-7.
  • 28. Cai B, Adams BL, Nelson TW. Relation between precipitate free zone with and grain boundary type in 7075–T7 Al alloy. Acta Mater. 2007;55:1543–53. https://doi.org/10.1016/j.actamat.2006. 10.015.
  • 29. Ahmadi MR, Povoden-Karadeniz E, Sonderegger B, Öksüz KI, Falahati A, Kozeschnik E. A model for coherency strengthening of large precipitates. Scripta Mater. 2014;84:47–50. https://doi. org/10.1016/j.scriptamat.2014.04.019.
  • 30. Peng B, Zhang H, Hong J, Gao J, Zhang H, Li J, Wang Q. The evolution of precipitates of 22Cr-25Ni-Mo-Nb-N heat-resist- ant austenitic steel in long term creep. Mat Sci Eng A-Struct. 2010;527:4424–30. https://doi.org/10.1016/j.msea.2010.03.089.
  • 31. Zhang Y, He H, Wang H, Chen G, An X, Wang Y. Evolution of microstructure and mechanical properties of 9Cr ferrite/martensite steels with different Si content after long-term aging at 550 °C. J Alloy Compd. 2021;873:159817. https://doi.org/10.1016/j.jallc om.2021.159817.
  • 32. Liu CM, Wang HM, Tian XJ, Tang HB. Subtransus triplex heat treatment of laser melting deposited Ti–5Al–5Mo–5V–1Cr–1Fe near β titanium alloy. Mat Sci Eng A-Struct. 2014;604:176–82. https://doi.org/10.1016/j.msea.2013.10.002.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dde656f6-2e0d-4968-8235-189d03997a6b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.