PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tolerance to cytostatic drugs bleomycin and vincristine by white rot fungi

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cytostatic drugs have become one of the greatest environmental hazards. They exhibit toxic, carcinogenic, mutagenic and teratogenic effects on flora and fauna, including people. They are poorly eliminated in conventional wastewater treatment plants and their mixtures could possess higher ecotoxicity than individual drugs. Fungi are organisms with enormous potential for biodegradation of a variety of toxic chemical pollutants. The aim of this work was to estimate tolerance of five fungal strains to selected anticancer drugs, which will be useful to determine the potential for their possible use in cytostatics removal and may be significant in the context of wastewater treatment application. Test was conducted on Fomes fomentarius (CB13), Hypholoma fasciculare (CB15), Phyllotopsis nidulans (CB14), Pleurotus ostreatus (BWPH) and Trametes versicolor (CB8) and the chosen drugs were bleomycin and vincristine. Their ability to grow in the presence of selected cytostatics was evaluated in cultures conducted on two solid media which differed in the richness of nutrient compounds. Fungal strains tolerance was expressed as a half maximal effective concentration. Results showed that fungi display better tolerance to high cytostatics’ concentrations in the medium rich in carbon source. Regardless of the medium used, the differences in growth ability were lower for bleomycin (the tolerance was higher). The greatest tolerance for bleomycin was shown by Pleurotus ostreatus. Results suggest that more efficient elimination of bleomycin would be possible to obtain, strain BWPH seems to be the best fungal candidate for this drug degradation assay and, probably, in wastewater treatment application tests in a longer perspective.
Rocznik
Strony
99--104
Opis fizyczny
Bibliogr. 28 poz., tab., wykr.
Twórcy
  • Silesian University of Technology, Poland
  • Silesian University of Technology, Poland
  • Institute of Plant Genetics, Polish Academy of Sciences
  • Silesian University of Technology, Poland
  • Institute of Plant Genetics, Polish Academy of Sciences
Bibliografia
  • 1. Asgher, M., Bhatti, H.N., Ashraf, M. & Legge, R.L. (2008). Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation 19: 771-783, DOI: 10.1007/s10532-008-9185-3.
  • 2. Balcerzak, W. & Rezka, P. (2014) Occurrence of anti-cancer drugsin the aquatic environment and efficiency of their removal ‒ the selected issues. Technical Transactions. Environment Engineering 1: 11-18.
  • 3. Bending, G.D., Friloux, M. & Walker, A. (2002). Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic potential. FEMS Microbiol Lett 212: 59-63.
  • 4. Castellet-Rovira, F., Lucas, D., Villagrasa, M., Rodríguez-Mozaz, S., Barceló, D. & Sarrà, M. (2018). Stropharia rugosoannulata and Gymnopilus luteofolius: Promising fungal species for pharmaceutical biodegradation in contaminated water. J Environ Manage 207: 396-404.
  • 5. Cerniglia, C.E. (1997). Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. J Ind Microbiol Biotechnol 19: 324-333.
  • 6. Ferrando-Climent, L., Cruz-Morató, C., Marco-Urrea, E., Vicent, T., Sarrà, M., Rodriguez-Mozaz, S. & Barceló, D. (2015). Non conventional biological treatment based on Trametes versicolor for the elimination of recalcitrant anticancer drugs in hospital wastewater. Chemosphere 136: 9-19.
  • 7. Gadd, G.M. (ed.) (2001) Fungi in Bioremediation, Cambridge University Press, Cambridge, ISBN 0521781191.
  • 8. Galvez, L., Urbaniak, M., Waskiewicz, A., Stępień, Ł. & Palmero, D. (2017). Fusarium proliferatum - causal agent of garlic bulb rot in Spain: genetic variability and mycotoxin production. Food Microbiol 67: 41-48, DOI: 10.1016/j.fm.2017.05.006.
  • 9. Gorczyca, A., Oleksy, A., Gala-Czekaj, D., Urbaniak, M., Laskowska, M., Waśkiewicz, A. & Stępień, Ł. (2018). Fusarium head blight incidence and mycotoxin accumulation in three durum wheat cultivars in relation to sowing date and density. Sci Nat, 105: 2, DOI: 10.1007/s00114-017-1528-7.
  • 10. Haroune, L., Saibi, S., Bellenger, J.P. & Cabana, H. (2014). Evaluation of the efficiency of Trametes hirsuta for the removal of multiple pharmaceutical compounds under low concentrations relevant to the environment. Bioresource Technology 171: 199-202.
  • 11. Jayasinghe, C., Imtiaj, A., Lee, G.W., Im, K.H., Hur, H., Lee, M.W., Yang, H.S. & Lee, T.S. (2008). Degradation of three aromatic dyes by white rot fungi and the production of ligninolytic enzymes. Mycobiology 36(2): 114-120, DOI: 10.4489/MYCO.2008.36.2.114.
  • 12. Jie, Y., Wenjuan, L., Ng, T.B., Deng, X., Lin, J. & Ye, X. (2017). Laccases: production, expression regulation, and applications in pharmaceutical biodegradation. Front Microbiol 8: 832.
  • 13. Jureczko, M. & Przystaś, W. (2019). Ecotoxicity risk of presence of two cytostatic drugs: Bleomycin and vincristine and their binary mixture in aquatic environment. Ecotox Environ Safe 172: 210-215.
  • 14. Kozlowska, E., Urbaniak, M., Hoc, N., Grzeszczuk, J., Dymarska, M., Stępień, Ł., Pląskowska, E., Kostrzewa-Susłow, E. & Janeczko, T. (2018). Cascade biotransformation of dehydroepiandrosterone (DHEA) by Beauveria species. Sci Rep-UK 8: 13449, DOI: 10.1038/s41598-018-31665-2.
  • 15. Kües, U. (2015). Fungal enzymes for environmental management. Curr Opin Biotech 33: 268-278.
  • 16. Lee, H., Jang, Y., Choi, Y.S., Kim, M.J., Lee, J., Lee, H., Hong, J.H., Lee, Y.M., Kim, G.H. & Kim, J.J. (2014). Biotechnological procedures to select white rot fungi for the degradation of PAHs. J Microbiol Meth 97: 56-62.
  • 17. Naghdi, M., Taheran, M., Brar, S.K., Kermanshahi-Pour, A., Verma, M. & Surampalli, R.Y. (2018). Removal of pharmaceutical compounds in water and wastewater using fungal oxidoreductase enzymes. Environ Pollut 234: 190-213.
  • 18. Nguyen, L.N., Hai, F.I., Yang, S., Kang, J., Leusch, F.D.L., Roddick, F., Price, W.E. & Nghiem, L.D. (2014). Removal of pharmaceuticals, steroid hormones, phytoestrogens, UV-filters, industrial chemicals and pesticides by Trametes versicolor: Role of biosorption and biodegradation. Int Biodeter Biodegr 88: 169-175.
  • 19. Nozaki, K., Beh, C.H., Mizuno, M., Isobe, T., Shiroishi, M., Kanda, T. & Amano, Y. (2008). Screening and investigation of dye decolorization activities of basidiomycetes. J Biosci Bioeng 105(1): 69-72, DOI: 10.1263/jbb.105.69.
  • 20. Olicón-Hernández, D.R., González-López, J. & Aranda, E. (2017). Overview on the biochemical potential of filamentous fungi to degrade pharmaceutical compounds. Front Microbiol 8: 1792, DOI: 10.3389/fmicb.2017.01792.
  • 21. Popowicz, J. & Koszelnik, P. (2015). The influence of the physicochemical properties on the methods of inactivation and removal of cytostatic drugs from water and wastewater Acta Sci Pol Formatio Circumiectus 14(3): 107-125. (in Polish)
  • 22. Prakash, V. (2007). Mycoremediation of environmental pollutants. Int J ChemTech Res 10(3): 149-155.
  • 23. Przystaś, W. (2016). Decolorization of synthetic dyes by whiterot fungi. Wydawnictwo Politechniki Śląskiej, Gliwice, ISBN 978-83-7880-364-5. (in Polish)
  • 24. Przystaś, W., Zabłocka-Godlewska, E., Grabińska-Sota, E. & Urbaniak, M. (2010). Potential ability of some ligninolytical fungal strains to decolorize synthetic dyes, Ochrona Środowiska 32(3): 15-20.
  • 25. Ramesh, C. & Pattar, M.G. (2009) Biodegradation of Pentachlorophenol by white rot fungi isolated from forests of Western Ghats of Karnataka India. Curr Trends Biotechnol Pharma 3(4): 417-427.
  • 26. Singh, M.P., Pandey, V.K., Srivastava, A.K. & Vishwakarma, S.K. (2010). Enzyme technology and mycoremediation by white rot fungi. Chapter 8 In: Singh, M.P., Agrawal, A. & Sharma, B. (eds). Recent Trends in Biotechnology 2. Nova Science Publishers, New York. ISBN 978-1-61761-797-3.
  • 27. Szałek, E., Karbownik, A., Urjasz, H., Głęboka, A. & Grześkowiak, E. (2013). The stability of vincristine sulphate (Teva) in concentrate and diluted with 0.9% sodium chloride. Farmacja Współczesna 6: 1-7.
  • 28. White, T.J., Bruns, T., Lee, S. & Taylor, J.W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetic. In: Innis, M.A., Gelfand, D.H. & Shinsky, J.J. (eds). PCR protocols, a guide to methods and applications. Academic Press: San Diego, CA, USA, 315-322.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dde55491-dfc4-4bf9-b765-fefc93acb355
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.