PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Crustal deformation characteristics in the southwest segment of the Longmenshan structural belt before Lushan Mw6.6 earthquake and seismogenic structural model

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Based on the calculation of precise leveling and GPS observation data, the crustal deformation characteristics of the southwest segment of Longmenshan structural belt before the Lushan Mw6.6 earthquake were analyzed. The results indicate: (1) Before the Lushan earthquake, the focus area and the SW section of the Longmenshan structure zone underwent weak crustal deformation and had large-scale crustal stress strengthening. The crustal deformation feld was in a locking state, and the far-feld area to the NW underwent obvious crustal deformation. This large-scale crustal deformation weakening or even locking phenomenon has a certain indicative signifcance for the occurrence of future moderately strong earthquakes in the same tectonic background area. (2) The Wenchuan earthquake caused the adjustment of the tectonic stress from the plateau and accelerated the accumulation of stress in the SW part of the Longmenshan structural belt, which contributed to the Lushan earthquake to a certain degree. (3) The seismogenic structure of the Lushan earthquake is not a simple thrusttype structure, but more likely to be an immature and complex blind thrust fault pattern that developed during the expansion and growth period of the multiple thrust nappe structural system. The seismogenic mechanism has reference value for the prediction of moderately strong earthquakes and scientifc research in the periphery of the continental plateau.
Czasopismo
Rocznik
Strony
1597--1608
Opis fizyczny
Bibliogr. 52 poz.
Twórcy
autor
  • The First Monitoring and Application Center, China Earthquake Administration, Tianjin 300180, China
autor
  • China University of Geosciences(Beijing), Beijing 100083, China
  • Key Laboratory of Gold Mineralization Processes and Resources Utilization Subordinated To the Ministry of Natural Resources, Shandong Institute of Geological Sciences, Jinan 250013, China
autor
  • The First Monitoring and Application Center, China Earthquake Administration, Tianjin 300180, China
autor
  • The First Monitoring and Application Center, China Earthquake Administration, Tianjin 300180, China
autor
  • The First Monitoring and Application Center, China Earthquake Administration, Tianjin 300180, China
autor
  • The First Monitoring and Application Center, China Earthquake Administration, Tianjin 300180, China
autor
  • Key Laboratory of Gold Mineralization Processes and Resources Utilization Subordinated To the Ministry of Natural Resources, Shandong Institute of Geological Sciences, Jinan 250013, China
Bibliografia
  • 1. Avouac JP, Meng LS, Wei SJ et al (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake. Nat Geosci 8:708–711
  • 2. Burchfiel BC, Chen ZL, Liu YP et al (1995) Tectonics of the Longmenshan and adjacent regions, Central China. Int Geol Rev 37(8):661–735
  • 3. Chen YT, Yang ZX, Zhang Y et al (2013a) A brief talk on the 20 April 2013 Lushan Mw6.7 earthquake. Acta Seismologica Sinica 35(3):285–295
  • 4. Chen YT, Yang ZX, Zhang Y et al (2013b) From 2008 Wenchuan earthquake to 2013 Lushan earthquake. Scientia Sinica Terrae 43(6):1064–1072
  • 5. Du F, Long F, Ruan X et al (2013) The M7.0 Lushan earthquake and the relationship with the M8.0Wenchun earthquake in Sichuan China. Chin J Geophys 56(5):1772–1783
  • 6. Dong D, Hering TA, King RW (1998) Estimating regional deformation from a combination of space and terrestrial geodetic data. J Geodesy 72(4):200–214
  • 7. Fang LH, Wu JP, Wang WL et al (2013) Relocation of mainshock and aftershock sequences of Ms7.0 Sichuan Lushan earthquake. Chin Sci Bull 20:1901–1909
  • 8. Gao Y, Wu ZL, Liu Z et al (2000) Seismic source characteristics of nine strong earthquakes from 1988 to 1990 and earthquake activity since 1970 in the Sichuan-Qinghai-Xizang (Tibet) zone of China. Pure Appl Geophys 157(9):1423–1443
  • 9. Gao Y, Wang Q, Zhao B et al (2013) A rupture blank zone in middle south part of Longmenshan Faults: effect after Ms7.0 earthquake of 20 April 2013 Lushan in Sichuan China. Scientia Sinica Terrae 43(6):1038–1046
  • 10. Gu GH, Shen XH, Wang M (2001) General characteristics of the recent horizontal crustal movement in Chinese mainland. Acta Seismol Sin 14(4):384–393
  • 11. Gu GH, Wang W, Xu YR (2009) Horizontal crustal movement before the great Wenchuan earthquake obtained from GPS observations in the regional network. Earth Sci 22(5):471–478
  • 12. Gu GH, Meng GJ, Fang Y (2011) Crustal movement in the earthquake area before and after 2008 Wenchuan earthquake as detected by precise single epoch positioning of GPS observations. Acta Seismol Sin 33(3):319–326
  • 13. Hardy RL (1972) The analytical geometry of topographic surface. Proc Am Con Surv Map 33:163–181
  • 14. Hardy RL, Gopfert WM (1975) Least square prediction of gravity anomalies, geoidal undulations and deflections of the vertical with multi-quadric harmonic functions. Geophys Res Lett 2(10):423–426
  • 15. Herring TA, King RW, McClusky SC (2010a) GAMIT Reference manual. GPS Analysis at MIT. Release 10.4. Massachussetts Institute Technology, http://www-gpsg.mit.edu/~simon/gtgk/index.htm
  • 16. Herring TA, King RW, McClusky SC (2010b) GLOBK Reference manual. Global Kalman filter VLBI and GPS analysis program.Release 10.4.Massachussetts Institute Technology, http://www-gpsg.mit.edu/~simon/gtgk/index.htm
  • 17. Huang LR, Kuang SJ (2000) Possibility of application of GPS technique to vertical deformation measurement. J Geodesy Geodyn 20(1):30–37
  • 18. Hubbard J, Shaw JH (2009) Uplift of the Longmen Shan and Tibetan Plateau, and the 2008 Wenchuan (M=7.9) earthquake. Nature 458:194–197
  • 19. Hubbard J, Shaw JH, Klinger Y (2010) Structural setting of the 2008 Mw7.9 Wenchuan, China, earthquake. Bull Seism Soc Am 100(5B):2713–2735
  • 20. Jia D, Wei GQ, Chen ZX et al (2006) Longmen Shan fold-thrust belt and its relation to the western Sichuan Basin in central China: New in-sights from hydrocarbon exploration. AAPG Bull 90(9):1425–1447
  • 21. Jiao J, Yang XH, Xu LQ et al (2008) Preliminary study on motion characteristics of Longmenshan fault before and after Ms8.0 Wenchuan earthquake. J Geodesy Geodyn (4):7–11+37
  • 22. Jin WZ, Tang LJ, Yang KM et al (2007) Deformation and zonation of the Longmenshan fold and thrust zone in the western Sichuan Basin. Acta Geol Sin 81(8):1072–1080
  • 23. Li YQ, Jia D, Wang MM (2014) Structural geometry of the source region for the 2013 Mw 6.6 Lushan earthquake: implication for earthquake hazard assessment along the Longmen Shan. Earth Planet Sci Lett 390:275–286
  • 24. Liu C, Zhu BJ, Shi YL (2012) Stress accumulation of the Longmenshan Fault and recurrence interval of Wenchuan earthquake based on viscoelasticity simulation. Acta Geol Sin 86(1):157–169
  • 25. Lv J, Wang XS, Su JR et al (2013) Hipocentral location and source mechanism of the Lushan Ms7.0 earthquake sequence. Chin J Geophys 56(5):1753–1763
  • 26. Long F, Wen XZ, Ruan X et al (2015) A more accurate relocation of the 2013 Ms7.0 Lushan, Sichuan, China, earthquake sequence, and the seismogenic structure analysis. J Seismol 19(3):653–665
  • 27. Meade BJ (2007) Present-day kinematics at the India-Asia collision zone. Geology 35(1):81–84
  • 28. Niu AF, Gu GH, Cao JP et al (2013) On the preseismic deformation changes prior to the Lushan M_S7.0 earthquake. Acta Seismologica Sinica 35(5):670–680+1
  • 29. Parsons T, Ji C, Kirby E (2008) Stress changes from the 2008 Wenchuan earthquake and increased hazard in the Sichuan basin. Nature 454(7203):509–510
  • 30. Reilinger R, Brown L, Oliver J (1983) Releveling evidence for crustal deformation in the United States. Tectonophysics 97:19–20
  • 31. Standardization Administration of the People's Republic of China (2006) 《Specifications for the first and second order leveling》.Standards Press of China
  • 32. Sun W, Luo ZL, Yang RJ et al (2009) Some geologic questions about Wenchuan violent earthquake. Xinjiang Pet Geol 30(1):124–128
  • 33. Tang LJ, Yang KM, Jin WZ et al (2008) Multi-layer slip zone and detachment structure deformation in Longmen Mountain thrust belt. Scientia Sinica Terrae 38(s1):30–40
  • 34. Toda S, Lin J, Meghraoui M et al (2008) 12 May 2008 M=7.9 Wenchuan, China, earthquake calculated to increase failure stress and seismicity rate on three major fault systems. Geophys Res Lett 35(17).
  • 35. Wan YG, Shen ZK, Sheng SZ et al (2009) The influence of 2008 Wenchuan earthquake on surrounding faults. Acta Seismol Sin 31(2):128–139
  • 36. Wang CY, Han WB, Wu JP et al (2007) Crustal structure beneath the eastern margin of the Tibetan Plateau and its tectonic implications. J Geophys Res 112(B7):B07307
  • 37. Wang L, Zhou QY, Wang J et al (2016) The research of the seismogenic structure of the lushan earthquake based on the synthesis of the deep seismic data and the surface tectonic deformation. Seismol Geol 38(2):458–476
  • 38. Wang MM, Jia D, Lin AM et al (2013a) Late Holocene activity and historical earthquakes of the Qiongxi thrust fault system in the southern Longmen Shan fold-and-thrust belt, eastern Tibetan Plateau. Tectonophysics 584:102–113
  • 39. Wang WM, Hao JL, Yao ZX (2013b) Preliminary result for rupture process of Apr.20, 2013, Lushan earthquake, Sichuan China. Chin J Geophys 56(4):1412–1417
  • 40. Wu YQ, Jiang ZS, Wang M et al (2013) Preliminary results of the co-seismic displacement and pre-seismic strain accumulation of the Lushan Ms7.0 earthquake reflected by the GPS surveying. Chin Sci Bull 58(20):1910–1916
  • 41. Xu XW, Wen XZ, Han ZJ et al (2013a) Lushan Ms 7.0 earthquake: a blind reserve-fault earthquake. Chin Sci Bull 20:1887–1893
  • 42. Xu XW, Chen GH, Yu GH et al (2013b) Seismogenic structure of Lushan earthquake and its relationship with Wenchuan earthquake. Earth Sci Front 20(3):11–20
  • 43. Xu ZQ, Wang Q, Li ZH et al (2016) Indo-Asian collision: Tectonic transition from compression to strike slip. Acta Geol Sin 90(1):1–23
  • 44. Yang GH, Zhu S, Liang HB et al (2015) Pre-seismic and Co-seismic deformation of Ms7.0 earthquake in Lushan. Geomat Info Sci Wuhan Univ 40(1):121–127
  • 45. Zeng XF, Luo Y, Han LB et al (2013) The Lushan Ms7.0 earthquake on 20April 2013: a high-angle thrust event. Chin J Geophys 56(4):1418–1424
  • 46. Zhang ZS, Yang GH (1996) Study on vertical crustal deformation rate gradient, fault deformation rate variation and strong earthquake risk region. Earthq Res China 12(4):347–357
  • 47. Zhang YQ, Li HL (2010) Late Quaternary active faulting along the SE segment of the Longmenshan fault zone. Quat Sci 30(4):699–710
  • 48. Zhang GW, Lei JS (2013) Relocations of Lushan, Sichuan strong earthquake(Ms7.0) and its aftershocks. Chin J Geophys 56(5):1764–1771
  • 49. Zhang PZ, Wen XZ, Xu XW et al (2009) Tectonic model of the great Wenchuan earthquake of May 12, 2008, Sichuan China. Chin SciBulletin 54(7):944–953
  • 50. Zhang Y, Xu LS, Chen YT (2013) Rupture process of the Lushan 4.20 earthquake preliminary analysis on the disaster-causing mechanism. Chin Geophys 56(4):1408–1411
  • 51. Zhan W, Li F, Hao WF et al (2017) Regional characteristics and influencing factors of seasonal vertical crustal motions in Yunnan China. Geophys J Int 210(3):1295–1304
  • 52. Zhan W, Tian YF, Zhang ZW et al (2020) Seasonal patterns of 3-D crustal motions across the seismically active southeastern Tibetan Plateau. J Asian Earth Sci 192:104274
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dde53c01-48af-4d5f-857d-04cde775c534
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.