Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper addresses the question of whether it is possible to design a nanoinclusion (characterized here by the incorporation of interface effects along the material interface) to achieve a screw dislocation-induced uniform internal strain field when a composite is subjected to anti-plane shear deformation. We demonstrate the existence of such an inclusion by identifying its shape via a conformal mapping with unknown coefficients obtained through a system of nonlinear equations. Our numerical examples verify that the inclusion shape is dependent on its size and the specific uniform internal strain field. We show also that the inclusion shape is available even with increasing distance between the inclusion and dislocation. This latter fact leads to the additional conclusion that non-circular nano-inclusions which achieve uniform internal strain fields do indeed exist in a composite subjected to uniform remote anti-plane shear loading.
Czasopismo
Rocznik
Tom
Strony
243--257
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
- State Key Laboratory of Mechanics and Control of Mechanical Structures Nanjing University of Aeronautics and Astronautics Nanjing 210016, China
- Department of Mechanical Engineering University of Alberta Edmonton, Alberta T6G 1H9, Canada
autor
- Department of Mechanical Engineering University of Alberta Edmonton, Alberta T6G 1H9, Canada
autor
- State Key Laboratory of Mechanics and Control of Mechanical Structures Nanjing University of Aeronautics and Astronautics Nanjing 210016, China
Bibliografia
- 1. J. Dundurs, T. Mura, Interaction between an edge dislocation and a circular inclusion, J. Mech. Phys. Solids, 12, 177–189, 1964.
- 2. L. Stagni, R. Lizzio, Shape effects in the interaction between an edge dislocation and an elliptical inhomogeneity, Appl. Phys. A, 30, 217–221, 1983.
- 3. M.H. Santare, L.M. Keer, Interaction between an edge dislocation and a rigid elliptical inclusion, ASME J. Appl. Mech., 53, 382–385, 1986.
- 4. W.J. Yen, C. Hwu, Y.K. Liang, Dislocation inside, outside, or on the interface of an anisotropic elliptical inclusion, ASME J. Appl. Mech., 62, 306–311, 1995.
- 5. S.X. Gong, S.A. Meguid, A screw dislocation interacting with an elastic elliptical inhomogeneity, Int. J. Eng. Sci., 32, 1221–1228, 1994.
- 6. M. Fan, D.K. Yi, Z.M. Xiao, A Zener–Stroh crack in fiber-reinforced composites with generalized Irwin plastic zone correction, Int. J. Mech. Sci., 82, 81–89, 2014.
- 7. M. Fan, D.K. Yi, Z.M. Xiao, Generalized Irwin plastic zone correction for a Griffith crack near a coated-circular inclusion, Int. J. Damage Mech., 24, 663–682, 2015.
- 8. P. Sharma, S. Ganti, Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies, ASME J. Appl. Mech., 71, 663–671, 2004.
- 9. L. Tian, R. Rajapakse, Elastic field of an isotropic matrix with a nanoscale elliptical inhomogeneity, Int. J. Solids Struct., 44, 7988–8005, 2007.
- 10. J. Luo, X. Wang, On the anti-plane shear of an elliptic nano inhomogeneity, Eur. J. Mech. A Solids, 28, 926–934, 2009.
- 11. M. Dai, P. Schiavone, C.F. Gao, Uniform strain fields inside periodic inclusions incorporating interface effects in anti-plane shear, Acta Mech., 2016. doi: 10.1007/s00707-016-1660-z.
- 12. M.E. Gurtin, A.I. Murdoch, A continuum theory of elastic material surfaces, Arch. Ration. Mech. Anal., 57, 291–323, 1975.
- 13. M.E. Gurtin, J. Weissmüller, F. Larche, A general theory of curved deformable interfaces in solids at equilibrium, Philos. Mag. A, 78, 1093–1109, 1998.
- 14. Q.H. Fang, Y.W. Liu, Size-dependent elastic interaction of a screw dislocation with a circular nano-inhomogeneity incorporating interface stress, Scripta Mater., 55, 99–102, 2006.
- 15. J. Luo, Z.M. Xiao, Analysis of a screw dislocation interacting with an elliptical nanoinhomogeneity, Int. J. Eng. Sci., 47, 883–893, 2009.
- 16. H.M. Shodja, H. Ahmadzadeh-Bakhshayesh, M.Y. Gutkin, Size-dependent interaction of an edge dislocation with an elliptical nano-inhomogeneity incorporating interface effects, Int. J. Solids Struct., 49, 759–770, 2012.
- 17. X. Wang, P. Schiavone, Interaction of a screw dislocation with a nano-sized, arbitrarily shaped inhomogeneity with interface stresses under anti-plane deformations, Proc. R. Soc. A, 470, 20140313, 2014.
- 18. T.C.T. Ting, P. Schiavone, Uniform antiplane shear stress inside an anisotropic elastic inclusion of arbitrary shape with perfect or imperfect interface bonding, Int. J. Eng. Sci., 48, 67–77, 2010.
- 19. X. Wang, Uniform fields inside two non-elliptical inclusions, Math. Mech. Solids, 17, 736–761, 2012.
- 20. M. Dai, C.F. Gao, C.Q. Ru, Uniform stress fields inside multiple inclusions in an elastic infinite plane under plane deformation, Proc. R. Soc. A, 471, 20140933, 2015.
- 21. M. Dai, P. Schiavone, C.F. Gao, Uniform strain field inside a non-circular inhomogeneity with homogeneously imperfect interface in anisotropic anti-plane shear, Z. Angew. Math. Phys., 67, 43, 2016.
- 22. M. Dai, P. Schiavone, C.F. Gao, Periodic inclusions with uniform internal hydrostatic stress in an infinite elastic plane, Z. Angew. Math. Mech., 2016; doi: 10.1002/zamm.201500298.
- 23. M. Dai, C.F. Gao, Non-circular nano-inclusions with interface effects that achieve uniform internal strain fields in an elastic plane under anti-plane shear, Arch. Appl. Mech., 2015; doi: 10.1007/s00419-015-1098-0.
- 24. N.I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity, Springer Science & Business Media, 2013.
- 25. J.A. Ruud, A. Witvrouw, F. Spaepen, Bulk and interface stresses in silver-nickel multilayered thin films, J. Appl. Phys., 74, 2517–2523, 1993.
- 26. D. Josell, J.E. Bonevich, I. Shao, R.C. Cammarata, Measuring the interface stress: Silver/nickel interfaces, J. Mater. Res., 14, 4358–4365, 1999.
- 27. R.E. Miller, V.B. Shenoy, Size-dependent elastic properties of nanosized structural elements, Nanotechnology, 11, 139–147, 2000.
- 28. V.B. Shenoy, Atomistic calculations of elastic properties of metallic fcc crystal surfaces, Phys. Rev. B, 71, 094104, 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dde1e124-dcc2-4b4a-889b-1aacafa4a73d