Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The vestibular system is the part of the inner ear responsible for balance. Vertigo and dizziness are generally caused by vestibular disorders and are very common symptoms in people over 60 years old. One of the most efficient treatments at the moment is vestibular rehabilitation, permitting to improve the symptoms. However, this rehabilitation therapy is a highly empirical process, which needs to be enhanced and better understood. Methods: This work studies the vestibular system using an alternative computational approach. Thus, part of the vestibular system is simulated with a three dimensional numerical model. Then, for the first time using a combination of two discretization techniques (the finite element method and the smoothed particle hydrodynamics method), it is possible to simulate the transient behavior of the fluid inside one of the canals of the vestibular system. Results: The obtained numerical results are presented and compared with the available literature. The fluid/solid interaction in the model occurs as expected with the methods applied. The results obtained with the semicircular canal model, with the same boundary conditions, are similar to the solutions obtained by other authors. Conclusions: The numerical technique presented here represents a step forward in the biomechanical study of the vestibular system, which in the future will allow the existing rehabilitation techniques to be improved.
Czasopismo
Rocznik
Tom
Strony
3--15
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
- Faculdade de Engenharia Universidade do Porto – FEUP, Porto, Portugal
autor
- Faculdade de Engenharia Universidade do Porto – FEUP, Porto, Portuga
autor
- Clínica ORL-Dr. Eurico Almeida, Widex, ESTSP, Portuga
autor
- Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial – INEGI, Porto, Portugal
autor
- Faculdade de Engenharia Universidade do Porto – FEUP, Porto, Portugal
Bibliografia
- [1] BONET J., KULASEGARAM S., Correction and stabilization of smoothed particle hydrodynamics method with applications in metal forming simulations, International Journal for Numerical Methods in Engineering, 2007, 47, 1189–1214.
- [2] BRADSHAW A.P., CURTHOYS I.S., TODD M.J., MAGNUSSEN J.S., TAUBMAN D.S., HALMAGYI G.M., A mathematical model of human semicircular canal geometry: a new basis for interpreting vestibular physiology, Journal of the Association for Research in Otolaryngology: JARO, 2010, 11(2), 145–159.
- [3] CIARAVELLA G., LASCHI C., DARIO P., Biomechanical modeling of semicircular canals for fabricating a biomimetic vestibular system, Conf. Proc. IEEE Eng. Med. Biol. Soc., 2006, 1, 1758–1761.
- [4] DAVIS J.L., XUE J., PETERSON E.H., GRANT J.W., Layer thickness and curvature effects on otoconial membrane deformation in the utricle of the red-ear slider turtle: static and modal analysis, J. Vestib. Res., 2007, 17(4), 145–162.
- [5] DUNCAN R.K., GRANT J.W., A finite-element model of inner ear hair bundle micromechanics, Hear Res., 1997, 104(1–2), 15–26.
- [6] GAMIZ M., LOPEZ-ESCAMEZ J., Health-related quality of life in patients over sixty years old with benign paroxysmal positional vertigo, Gerontology, 2004, 50, 82–86.
- [7] GRIESER B., OBRIST D., Validation of assumptions on the endolymph motion inside the semicircular canals of the inner ear, 2013.
- [8] GENTIL F., GARBE C., PARENTE M., MARTINS P., SANTOS C., ALMEIDA E., JORGE R.N., The biomechanical effects of stapes replacement by prostheses on the tympano-ossicular chain, Int. J. Numer Method Biomed. Eng., 2014, 30(12), 1409–1420.
- [9] HENSON O.W. et al., Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill and The Center for In Vivo Microscopy, Duke University, Durham, NC, Copyright 2000.
- [10] HERDMAN S.J., editor. Vestibular rehabilitation, 3rd ed., FA Davis Co., Philadelphia 2007.
- [11] HERDMAN S.J., Vestibular rehabilitation, Current Opinion in Neurology, 2013, 26(1), 96–101.
- [12] HUMPHRISS R.L., BAGULEY D.M., PEERMAN S., MITCHELL T.E., MOFFAT D.A., Clinical outcomes of vestibular rehabilitation, Physiotherapy, 2001, 87, 7, 368–373.
- [13] JAEGER R., TAKAGI A., HASLWANTER T., Modeling the relation between head orientations and otolith responses in humans, Hearing Research, 2002, 173(1–2), 29–42.
- [14] KASSEMI M., DESERRANNO D., OAS J.G., Fluid–structural interactions in the inner ear, Computers & Structures, 2005, 83(2–3), 181–189.
- [15] KONDRACHUK V., Finite element modeling of the 3D otolith structure, J. Vestib. Res., 2001, 11(1), 13–32.
- [16] LIU G.R., LIU M.B., Smoothed Particle Hydrodynamics – A Meshfree Particle Method, World Scientific Publishing Co., Pte., Ltd., 2003,
- [17] NEUHAUSER H.K., LEMPERT T., Vertigo: epidemiologic aspects, Semin. Neurol., 2009, 29(5), 473–481.
- [18] OBRIST D., HEGEMANN S., Fluid-particle dynamics in canalithiasis, Journal of the Royal Society, Interface / the Royal Society, 2008, 5(27), 1215–1229.
- [19] OBRIST D., HEGEMANN S., KRONENBERG D., HÄUSELMANN O., RÖSGEN T., In vitro model of a semicircular canal: design and validation of the model and its use for the study of canalithiasis, J. Biomech., 2010, 43(6), 1208–1214.
- [20] RAJGURU S.M., IFEDIBA M.A., RABBITT R.D., Biomechanics of horizontal canal benign paroxysmal positional vertigo, J. Vestib. Res., 2005, 15(4), 203–214.
- [21] SELVA P., MORLIER J., GOURINAT Y., Development of a Dynamic Virtual Reality Model of the Inner Ear Sensory System as a Learning and Demonstrating Tool, Model Simul. Eng., 2009, 2009, 1–10.
- [22] SELVA P., MORLIER J., GOURINAT Y., Toward a three-dimensional finite-element model of the human inner ear angular accelerometers sensors, Int. J. Comput. Vis Biomech. (IJCV B), 2010.
- [23] SHEN S., LIU Y., SUN X. et al., A biomechanical model of the inner ear: numerical simulation of the caloric test, Scientific World Journal, 2013, 160205.
- [24] SQUIRES T.M., WEIDMAN M.S., HAIN T.C., STONE H.A., A mathematical model for top-shelf vertigo: the role of sedimenting otoconia in BPPV, J. Biomech., 2004, 37(8), 1137– 1146.
- [25] STEINHAUSEN W., Uber die Beobachtung der Cupula in den Bogengangsampullen des Labyrinths des Lebenden Hechts, Pflugers Arch. Ges. Physiol,, 1933, 23, 500–512.
- [26] VALLI P., BOTTA L., ZUCCA G., VALLI S., BUIZZA A., Simulation of cupulolithiasis and canalolithiasis by an animal model, J. Vestib. Res., 2008, 18(2–3), 89–96.
- [27] VAN BURSKIRK W.C., WATTS R.G., LIU Y.K., The Fluid Mechanics of The Semicircular Canals, J. Fluids Mechanics, 1976, 78(1), 87–98.
- [28] VEGA R., ALEXANDROV V., ALEXANDROVA T.B., SOTO E., Mathematical Model of the Cupula-Endolymph System with Morphological Parameters for the Axolotl (Ambystoma tigrinum) Semicircular Canals, The Open Medical Informatics Journal, 2008, 2, 138–148.
- [29] VON BREVERN M., NEUHAUSER H., Epidemiological evidence for a link between vertigo and migraine, Journal of Vestibular Research: Equilibrium & Orientation, 2011, 21(6), 299–304.
- [30] WU CAIQIN, HUA C., YANG L., DAI P., ZHANG T., WANG K., Dynamic analysis of fluid-structure interaction of endolymph and cupula in the lateral semicircular canal of inner ear, Journal of Hydrodynamics, Ser. B. 2011, 23(6), 777–783.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dddf0edf-d0a3-4644-945d-db6d3991221c