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A finite difference solution of an unsteady flow past an oscillating semi-infinite vertical place with variable 
temperature and uniform mass flux is presented here. The fluid considered here is a gray, absorbing-emitting 
radiation but a non-scattering medium. The dimensionless governing equations are solved by an efficient, more 
accurate, and unconditionally stable and fast converging implicit scheme. The steady state velocity, temperature 
and concentration profiles are shown graphically. The effect of velocity and temperature for different physical 
parameters such as the thermal radiation, Schmidt number, thermal Grashof number and mass Grashof number is 
studied. It is observed that the velocity decreases in the presence of thermal radiation. It is also observed that the 
time taken to reach a steady-state is more in the case of vertical plate than horizontal plate. 
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1. Introduction 
 
 Radiative heat and mass transfer play an important role in manufacturing industries for the design of 
reliable equipment. Nuclear power plants, gas turbines and various propulsion devices for aircraft, missiles, 
satellites and space vehicles are examples of such engineering applications. Radiative convective flows are 
encountered in countless industrial and environment processes e.g., heating and cooling chambers, fossil fuel 
combustion energy processes, evaporation from large open water reservoirs, astrophysical flows, solar power 
technology and space vehicle re-entry.  
 Cess (1966) studied the interaction of thermal radiation with free convection heat transfer . 
Soundalgekar and Takhar (1993) considered the radiative free convective flow of an optically thin gray-
gas past a semi-infinite vertical plate. Radiation effects on a free convection flow past a semi-infinite 
vertical plate with mass transfer were studied by Chamkha et al. (2001). In all above studies, the stationary 
vertical plate is considered. Raptis and Perdikis (1999) studied the effects of thermal radiation and a free 
convection flow past a moving infinite vertical plate. Again, Raptis and Perdikis (2003) studied thermal 
radiation effects on a moving infinite vertical plate in the presence of mass diffusion. Radiation effects on 
a moving infinite vertical plate with variable temperature were studied by Muthucumaraswamy and 
Ganesan (2003). The boundary layer in thermal radiation absorbing and emitting media was studied by 
Viskanta and Grosh (1962).  
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 The flow of a viscous, incompressible fluid past an infinite isothermal vertical plate, oscillating in its 
own plane, was solved by Soundalgekar (1979). The effect on the flow past a vertical oscillating plate due to 
a combination of concentration and temperature differences was studied extensively by Soundalgekar and 
Akolkar (1983). The effect of mass transfer on the flow past an infinite vertical oscillating plate in the 
presence of constant heat flux was studied by Soundalgekar et al. (1994). The effect of thermal radiation on 
the laminar free convection from a heated vertical plate wase studied by Arpaci (1968). An unstaedy flow of 
an incompressible viscous fluid past an impulsively started semi-infinite vertical plate with mass flux was 
studied by Muthucumaraswamy and Ganesan (1998). 
 However, the problem of an unsteady natural convection flow past an oscillating semi-infinite vertical 
plate with variable temperature and uniform mass flux has not received attention of any researcher. Hence it is 
proposed to study the flow of viscous incompressible fluid past an oscillating semi-infinite vertical plate with 
variable surface temperature and uniform mass flux by an implicit finite-difference scheme of Crank-Nicolson 
type. This study is found useful in distribution of cooling in a closed environment.   

 
2. Mathematical formulation 

 
 A transient, laminar, unsteady natural convection flow of a viscous incompressible fluid past an 
oscillating semi-infinite isothermal vertical plate in the presence of thermal radiation has been considered. 
It is assumed that the concentration C  of the diffusing species in the binary mixture is very small in 
comparison to the other chemical species which are present. Here, the x-axis is taken along the plate in the 
vertically upward direction and the y-axis is taken normal to the plate. The physical model of the problem 
is shown in Fig.1. Initially, it is assumed that the plate and the fluid are of the same temperature and 
concentration. At time t > 0 , the plate starts oscillating in its own plane with frequency   against the 

gravitational field. The temperature of the plate is raised to   n
wT x T ax   and the concentration level 

near the plate is raised at a constant rate. The fluid considered here is a gray, absorbing-emitting radiation 
but a non-scattering medium and the viscous dissipation is assumed to be negligible. Then under the above 
assumptions, the governing boundary layer equations of mass, momentum and concentration for free the 
convective flow with usual Boussinesq’s approximation are as follows 
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Fig.1. Physical model of the problem. 
 

 The initial and boundary conditions are 
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 In the case of an optically thin gray gas the local radiant absorption is expressed by 
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= 4a T T
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

                                                                   (2.6) 

 
 We assume that the temperature differences within the flow are sufficiently small such that T may 
be expressed as a linear function of the temperature. This is accomplished by expanding T in a Taylor series 
about T and neglecting higher-order terms, thus 
 

  .4 3 4T 4T T 3T                                                                                    (2.7) 
 
 By using Eqs (2.6) and (2.7), Eq.(2.3) reduces to 
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 On introducing the following non-dimensional quantities 
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 Equations (2.1) to (2.4) are reduced to the following non-dimensional form  
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 The corresponding initial and boundary conditions in non-dimensional quantities are 
 
  t  0 :   U = 0,     V = 0,       T = 0,            C = 0, 
 

  t >0: U = cosωt,     V = 0,         T ,nX       
C

1
Y


 


            at        Y = 0,                (2.14) 

 
  U = 0,          T = 0,         C = 0                                   at        X = 0, 
 
  U  0,        T  0,      C  0                                  as       Y  . 
 
3. Numerical technique 
 
 In order to solve the unsteady, non-linear coupled Eqs (2.10) to (2.13) under the conditions of 
Eq.(2.14), an implicit finite difference scheme of Crank- Nicolson type has been employed. The finite 
difference equations corresponding to Eqs (2.10) to (2.13) are as follows 
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 The concentration boundary condition at Y=0 in the finite difference form is  
 

  .

n 1 n n 1 n
i ,1 i ,1 i , 1 i , 1C C C C1

= 1
2 2 Y

 
      


                                       (3.5) 

 
 At Y = 0  (i.e., j=0), Eq.(3.4) becomes  
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 Here the region of integration is considered as a rectangle with sides Xmax ( = 1) and Ymax (=20), 
where Ymax corresponds to Y =   which lies very well outside both the momentum and energy boundary 
layers. The maximum of Y was chosen as 20 after some preliminary investigations so that the last two of the 
boundary conditions Eqs (2.14) are satisfied with in the tolerance limit 10-5. 
 After experimenting with a few sets of mesh sizes they have been fixed at the level  X = 0.05,  Y 
= 0.25, with time step  t = 0.01. In this case, the spatial mesh sizes are reduced by 50% in one direction, 
and later in both directions, and the results are compared. It is observed that when the mesh size is reduced 
by 50% in the Y-direction, the results differ in the fifth decimal place. While the mesh sizes are reduced by 
50% in X-direction or in both directions, the results are comparable to three decimal places. Hence, the above 

mesh sizes have been considered as appropriate for calculations. The coefficients ,
n
i jU and ,

n
i jV  appearing in 

the finite difference equation are treated as constants at any one time step. Here i-designates the grid point 
along the X - direction, j along the Y- direction and k to the t-time. The values of U, V and T are known at all 
grid points at t = 0 from the initial conditions. 
 The computations of U, V, T and C at time level (n +1) using the values at previous time level (n) are 
carried out as follows: the finite-difference Eqs (3.4) and (3.7) at every internal nodal point on a particular i-
level constitute a tri-diagonal system of equations. The system of equations is solved by using The Thomas 
algorithm as discussed in Carnahan et al. (1969). Thus, the values of C are found at every nodal point for a 
particular i at (n+1)th time level. Similarly, the values of T are calculated from Eq.(3.3) .Using the values of 
C and T at (n+1)th time level in Eq.(3.2) , the values of U at (n+1)th time level are found in a similar manner. 
Thus, the values of C, T and U are known on a particular i-level. Finally, the values of V are calculated 
explicitly using Eq.(3.1) at every nodal point at particular i-level at (n+1)th time level. This process is 
repeated for various i-levels. Thus the values of C, T, U and V are known at all grid points in the rectangle 
region at (n+1)th time level. 
 Computations are carried out In a similar manner by moving along the i-direction. After computing 
the values corresponding to each i at a time level, the values at the next time level are determined in a similar 
manner. Computations are repeated until the steady-state is reached. The steady-state solution is assumed to 
have been reached, when the absolute difference between the values of U, and as well as temperature T and 
concentration C at two consecutive time steps are less than 10-5 at all grid points. 
 
 
 
 



Finite difference solution of unsteady flow past an oscillating … 715 

 
4. Discussion of results 
 
 The numerical values of the velocity, temperature and concentation are computed for different 
parameters such as the radiation parameter, Schmidt number, phase angle, thermal Grashof number and mass 
Grashof number. The purpose of the calculations given here is to assess the effects of the parameters 

, ,Gr,Gct R  and Sc  upon the nature of the flow and transport. The values of the Prandtl number Pr is 
chosen such that they represent air (Pr = 0.71) and the Schmidt number Sc = 0.6 (water vapour).  
 The steady-state velocity profiles for different phase angles are shown in Fig.2. The velocity profiles 
presented are those at X = 1.0. It is observed that for different phase angles ( / , ),t 0, / 6, 3 / 2    
Gr=5=Gc and R=2 the velocity decreases with increasing the phase angle. Here ωt = 0 represents the vertical 
plate. Note that the velocity profile grows from U = 1 and t = / 2   refers to the horizontal plate and the 
velocity profiles starting with U = 0. The numerical value satisfies the prescribed boundary conditions. It is 
also observed that the time taken to reach the steady-state is larger in the case of a vertical plate than a 
horizontal plate. 
 In Fig.3, the velocity profiles for different values of thermal Grashof number (Gr=2, 5), mass 
Grashof number (Gc=2, 5), t / 6    and R=2 are shown graphically. This shows that the velocity increases 
with increasing the thermal Grashof number or mass Grashof number. As the thermal Grashof number or 
mass Grashof number increase, the buoyancy effect becomes more significant, as expected; it implies that, 
more fluid is entrained from the free stream due to the strong buoyancy effects. The effect of velocity for 
different radiation parameters (R = 0.2, 2, 5), t / 6    and Gr=Gc=5 is shown in Fig.4. It is observed that 
the velocity increases with decreasing the radiation parameter. This shows that velocity decreases in the 
presence of high thermal radiation. 
 
 

 
 

Fig.2. Steady state velocity profiles for different values of .t  
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Fig.3. Steady state velocity profiles for different values of Gr and Gc. 
 

 
 

Fig.4. Steady state velocity profiles for different values of R. 
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 The steady-state velocity profiles for different values of the Schmidt number (Sc=0.16, 0.3, 0.6, 
2.01), Gr=Gc=5, t / 6    and R=2 are shown in Fig.5. The velocity profiles presented are those at X = 1.0. 
It is observed that the velocity decreases with increasing the Schmidt number and the steady-state value 
increases with increasing the Schmidt number. The velocity boundary layer seems to grow in the direction of 
motion of the plate. It is observed that near the leading edge of a semi-infinite vertical plate moving in a 
fluid, the boundary layer develops along the direction of the plate. However, the time required for the 
velocity to reach the steady-state depends upon the Schmidt number. This shows that the contribution of 
mass diffusion to the buoyancy force increases the maximum velocity significantly. 
 The temperature profiles for different values of the thermal radiation parameter (R=0.2, 2, 5, 10) are 
shown in Fig.6. It is observed that the temperature increases with decreasing R. This shows that the 
buoyancy effect on the temperature distribution is very significant in air (Pr = 0.71). It is known that the 
radiation parameter and Prandtl number play an important role in flow phenomena because, it is a measure of 
the relative magnitude of the viscous boundary layer thickness to the thermal boundary layer thickness. The 
concentration profiles for different values of the Schmidt number (Sc=0.16, 0.3, 0.6, 2.01) are shown in 
Fig.7. It is observed that the plate concentration increases with decreasing Sc. 
 

 
 
 

Fig.5. Steady state velocity profiles for different values of Sc. 
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Fig.6. Temperature profiles for different values of R. 
 

 
 

Fig.7. Concentration profiles for different values of Sc. 
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 Knowing the velocity and temperature field, it is customary to study the skin-friction, Nusselt 
number and Sherwood number. The local as well as average values of the skin-friction, Nusselt number and 
Sherwood number in dimensionless form are as follows 
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 The derivatives involved in Eqs (4.1) to (4.6) are evaluated using the five-point approximation 
formula and then the integrals are evaluated using the Newton-Cotes closed integration formula. 
 The local skin-friction, Nusselt number and Sherwood number are plotted in Figs 8, 9 and 10 
respectively. Local skin-friction values for different phase angles are evaluated from Eq.(4.1) and plotted in 
Fig.8 as a function of the axial coordinate. The local wall shear stress increases with decreasing the phase 
angle. The trend shows that the wall shear stress is larger in the case of a vertical plate than a horizontal 
plate. The local Nusselt number for different values of the thermal radiation parameter is presented in Fig.9 
as a function of the axial co-ordinate. The trend shows that the Nusselt number increases with increasing the 
values of the thermal radiation parameter. It is clear that the rate of heat transfer is larger in the presence of 
thermal radiation. The local Sherwood numbers for different values of the Schmidt number are shown in 
Fig.10. As expected, the rate of mass transfer increases with increasing values of the Schmidt number. This 
trend is just reversed as compared to the concentration field for different values of the Schmidt number given 
in Fig.7. 
 The average values of the skin-friction, Nusselt number and Sherwood number are shown in Figs 11, 
12 and 13 respectively. The effects of the different phase angles on the average values of the skin-friction are 
shown in Fig.11. The average skin-friction decreases with decreasing or with increasing values of the phase 
angle. Figure 12 illustrates that the average Nusselt number increases with increasing the radiation 
parameter. From Fig.13, it is observed that the average Sherwood number increases with increasing values of 
the Schmidt number. 
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Fig.8. Local skin friction. 
 

 
 

Fig.9. Local Nusselt number. 
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Fig.10. Local Sherwood number. 
 

 
 

Fig.11. Average skin friction. 
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Fig.12. Average Nusselt number. 
 

 
 

Fig.13. Average Sherwood number. 

-3

-2

-1

0

1

2

3

4

0 0,5 1 1,5 2

R

5

2

0.2

t

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

0 0,5 1 1,5 2

Sc

2.01

1
0.6
0.3

t

 

 



Finite difference solution of unsteady flow past an oscillating … 723 

 
 
5. Conclusions 
 
 The finite difference solution of thermal radiation effects on an unsteady flow past an oscillating 
semi-infinite vertical plate with prescribed variable surface temperature and uniform mass flux has been 
studied. The dimensionless governing equations are solved by an implicit scheme of Crank-Nicolson type. 
The effects of velocity, temperature and concentration for different parameters are studied. The local as well 
as average skin-friction, Nusselt number and Sherwood number are shown graphically. The study shows that 
the number of time steps to reach the steady-state depends strongly on the radiation parameter. It is observed 
that the contribution of mass diffusion to the buoyancy force increases the maximum velocity significantly. 
The conclusions of the study are as follows: 
 
(i) The velocity increases with decreasing the radiation parameter. 
(ii) The steady-state velocity increases with decreasing the phase angle. 
(ii) The time taken to reach steady-state is larger in the case of a vertical plate than a horizontal plate. 
 
Nomenclature 
 
 *a   – absorbtion constants 
 C   – dimensionless concentration 
 C   – species concentration in the fluid  
 pC   – specific heat at constant pressure  

 wC   – concentration of the plate 

 C   – concentration in the fluid far away from the plate  

 D   – mass diffusion coefficient  
 Gc   – mass Grashof number 
 Gr   – thermal Grashof number 
 g   – acceleration due to gravity  
 k   – thermal conductivity  
 M  – magnetic field parameter 
 Nu   – dimensionless average Nusselt number 
 Nu x   – dimensionless local Nusselt number 

 Pr   – Prandtl number 
 R  – thermal radiation parameter 
 Sc   – Schmidt number 
 Sh   – dimensionless average Sherwood number 
 Sh x   – dimensionless local Sherwood number 

 T   – temperature of the fluid near the plate 
 T   – temperature 
 wT    – temperature of the plate 

 T   – temperature of the fluid far away from the plate 

 t   – time  
 0u   – velocity of the plate  

 ,u v   – velocity of the components of the fluid in X, Y- directions, respectively 

 w   –conditions at the wall 
 X  – dimensionless coordinate along the plate 
 x  – coordinate along the plate 
 Y  – dimensionless coordinate axis normal to the plate 
 y   – coordinate axis normal to the plate  
    – thermal diffusivity 
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    – volumetric coefficient of thermal expansion  

    – volumetric coefficient of expansion with concentration  
    – coefficient of viscosity  
    –dimensionless temperature 
    – kinematic viscosity  
    – density of the fluid  
 σ  – electric conductivity 
    – dimesionless average skin friction 
 x   – dimensionless local skin friction 

    – dimensional frequency of oscillation 
    – frequency of oscillation 
 t   – dimensional phase angle 

 t    – phase angle 
    – free stream conditions 
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