PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of the depression effect of two thiol depressants on the separation of specularite and aegirite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, two thiol-type reagents, thioglycolic acid (TGA) and mercaptopropionic acid (MPA), were firstly exploited and compared as aegirite depressants with sodium oleate (NaOl) as the collector to separate specularite from aegirite by flotation. The adsorption performances and mechanisms of TGA and MPA on aegirite surface were investigated via flotation experiments, Zeta potential tests, adsorption measurements, contact angle dimensions, and surface characterizations. The results of flotation indicated that TGA and MPA exhibited a considerable depression impact on the flotation of aegirite but little effect on specularite. TGA depicted more excellent depression performance than MPA, which was confirmed by HLB calculation. The results demonstrated that TGA and MPA favorably adsorbed on aegirite surface instead of specularite, hindering the subsequent adsorption of NaOl on specularite and resulting in the surface being hydrophilic. XPS results revealed that TGA and MPA were significantly adsorbed on the surface of aegirite through an interaction between the carboxyl and thiol groups of the depressants and the Si and Fe on the surface of aegirite.
Słowa kluczowe
Rocznik
Strony
art. no. 152164
Opis fizyczny
Bibliogr. 29 poz., rys., wykr.
Twórcy
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093, China
  • School of Metallurgical Engineering, Anhui University of Technology, Ma’anshan 243002, China
autor
  • School of Metallurgical Engineering, Anhui University of Technology, Ma’anshan 243002, China
  • School of Metallurgical Engineering, Anhui University of Technology, Ma’anshan 243002, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
Bibliografia
  • FILIPPOV, L. O., SEVEROV, V. V., FILIPPOVA, I. V., 2013. Mechanism of starch adsorption on Fe–Mg–Al-bearing amphiboles. International Journal of Mineral Processing, 123, 120–128.
  • FU, Y., YIN, W., YANG, B., LI, C., ZHU, Z., LI, D., 2018. Effect of sodium alginate on reverse flotation of hematite and its mechanism. International Journal of Minerals Metallurgy and Materials, 25(10), 1113–1122.
  • LI, M., LIU, J., HU, Y., GAO, X., YUAN, Q., ZHAO, F., 2020. Investigation of the specularite/chlorite separation Rusing chitosan as a novel depressant by direct flotation. Carbohydrate Polymers, 240, 116334.
  • WENG, X., MEI, G., ZHAO, T., & ZHU, Y., 2013. Utilization of novel ester-containing quaternary ammonium surfaktant as cationic collector for iron ore flotation. Separation and Purification Technology, 103, 187-194.
  • PEREIRA, A. R. M., HACHA, R. R., TOREM, M. L., MERMA, A. G., SILVAS, F. P., 2021. Direct hematite flotation from an iron ore tailing using an innovative biosurfactant. Separation Science and Technology, 56(17), 2978-2988.
  • LI, M., LIU, J., GAO, X., HU, Y., TONG, X., ZHAO, F., YUAN, Q., 2019. Surface properties and floatability comparison of aegirite and specularite by density functional theory study and experiment. Minerals, 9(12), 782.
  • LI, M., YANG, R., GAO, X., & HU, Y., 2020. The effect of selective adsorption of dissolved aegirite species on the separation of specularite and aegirite. Advanced Powder Technology, 31(10), 4197-4206.
  • ZHANG, C., XU, Z., HU, Y., HE, J., TIAN, M., ZHOU, J., ZHOU, Q., CHEN, S., CHEN, D., CHEN P., W., 2019. Novel insights into the hydroxylation behaviors of α-quartz (101) surface and its effects on the adsorption of sodium oleate. Minerals, 9(7), 450.
  • YANG, B., YIN, W., YAO, J., SHENG, Q., ZHU, Z., 2022. Role of decaethoxylated stearylamine in the selective flotation of hornblende and siderite: An experimental and molecular dynamics simulation study. Applied Surface Science, 571, 151177.
  • ROCHA, G. M., de Souza MACHADO, N. R., PEREIRA, C. A., 2019. Effect of ground corn and cassava flour on the flotation of iron ore tailings. Journal of Materials Research and Technology, 8(1), 1510-1514.
  • YAO, J., YIN, W., & GONG, E., 2016. Depressing effect of fine hydrophilic particles on magnesite reverse flotation. International Journal of Mineral Processing, 149, 84-93.
  • SHRIMALI, K., & MILLER, J. D., 2016. Polysaccharide depressants for the reverse flotation of iron ore. Transactions of the Indian Institute of Metals, 69(1), 83-95.
  • POPERECHNIKOVA, O. Y., FILIPPOV, L. O., SHUMSKAYA, E. N., & FILIPPOVA, I. V., 2017. Intensification of the reverse cationic flotation of hematite ores with optimization of process and hydrodynamic parameters of flotation cell. In Journal of Physics: Conference Series, 879(1), 012016.
  • LUO, X. M., YIN, W. Z., WANG, Y. F., SUN, C. Y., MA, Y. Q., LIU, J., 2016. Effect and mechanism of siderite on reverse anionic flotation of quartz from hematite. Journal of Central South University, 23(1), 52-58.
  • VELOSO, C. H., FILIPPOV, L. O., FILIPPOVA, I. V., OUVRARD, S., ARAUJO, A. C., 2018. Investigation of the interaction mechanism of depressants in the reverse cationic flotation of complex iron ores. Minerals Engineering, 125, 133-139.
  • LI, M., LIU, J., HU, Y., GAO, X., YUAN, Q., ZHAO, F., 2020. Investigation of the specularite/chlorite separation Rusing chitosan as a novel depressant by direct flotation. Carbohydrate polymers, 240, 116334.
  • HUANG, G., ZHOU, C., LIU, J., 2012. Effects of different factors during the de-silication of diaspore by direct flotation. International Journal of Mining Science and Technology, 22(3), 341-344.
  • MONTES-SOTOMAYOR, S., HOUOT, R., KONGOLO, M., 1998. Flotation of silicated gangue iron ores: Mechanism and effect of starch. Minerals Engineering, 11(1), 71–76.
  • MOREIRA, G. F., PEÇANHA, E. R., MONTE, M. B. M., LEAL FILHO, L. S., STAVALE, F., 2017. XPS study on the mechanism of starch-hematite surface chemical complexation. Minerals Engineering, 110, 96–103.
  • LI, L., ZHANG, C., YUAN, Z., XU, X., SONG, Z., 2019. AFM and DFT study of depression of hematite in oleate-starch-hematite flotation system. Applied Surface Science, 480, 749–758.
  • GIBBS, H. L., 1948. U.S. Patent No. 2,449,984. Washington, DC: U.S. Patent and Trademark Office.
  • LIU, Q., 1985. Studies on the flotation depression of chalcopyrite, galena and sphalerite by thioglycollic acid (Doctoral dissertation, University of British Columbia).
  • LI, M. Y., WEI, D. Z., SHEN, Y. B., LIU, W. G., GAO, S. L., Liang, G. Q., 2015. Selective depression effect in flotation separation of copper–molybdenum sulfides using 2, 3-disulfanylbutanedioic acid. Transactions of Nonferrous Metals Society of China, 25(9), 3126-3132.
  • YIN, Z., SUN, W., HU, Y., ZHAI, J., GUAN, Q., 2017a. Evaluation of the replacement of NaCN with depressant mixtures in the separation of copper-molybdenum sulphide ore by flotation. Separation and Purification Technology, 173, 9–16.
  • YIN, Z., XU, L., HE, J., WU, H., FANG, S., KHOSO, S. A., HU, Y. H., SUN, W., 2019b. Evaluation of l-cysteine as an eco-friendly depressant for the selective separation of MoS2 from PbS by flotation. Journal of Molecular Liquids, 282, 177-186.
  • YAN, H., YANG, B., ZHU, H., HUANG, P., HU, Y., 2021. Selective flotation of Cu-Mo sulfides using dithiothreitol as an environmental-friendly depressant. Minerals Engineering, 168, 106929.
  • LI, M., YUAN, Q., GAO, X., HU, Y. (2020). Understanding the differential depression of tetrasodium glutamate diacetate on the separation of specularite and chlorite: Experimental and DFT study. Minerals Engineering, 159, 106629.
  • YANG, B., WANG, D., CAO, S., YIN, W., XUE, J., ZHU, Z., FU, Y. YAO, J., 2020. Selective adsorption of a high- performance depressant onto dolomite causing effective flotation separation of magnesite from dolomite. Journal of Colloid and Interface Science, 578, 290-303.
  • WANG, X., LIU, J., ZHU, Y., HAN, Y. (2021). Adsorption and depression mechanism of an eco-friendly depressant PCA onto chalcopyrite and pyrite for the efficiency flotation separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 620, 126574
  • GAO, X., LIU, J., LI, M., GUO, C., LONG, H., ZHANG, Y., XIN, L. (2020). Mechanistic study of selective adsorption and reduction of Au (III) to gold nanoparticles by ion-imprinted porous alginate microspheres. Chemical Engineering Journal, 385, 123897
  • UHLIG, I., SZARGAN, R., NESBITT, H. W., & LAAJALEHTO, K., 2001. Surface states and reactivity of pyrite and marcasite. Applied Surface Science, 179(1-4), 222-229.
  • BIESINGER, M. C., PAYNE, B. P., GROSVENOR, A. P., LAU, L. W., GERSON, A. R., SMART, R. S. C., 2011. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science, 257(7), 2717-2730.
  • GOODWIN, J., 2009. Colloids and interfaces with surfactants and polymers. John Wiley & Sons.
  • DAVIES, J. T., 2012. Interfacial phenomena. Elsevie
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ddd66148-987f-4e52-a925-ec894d5f9e6e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.