PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reduction of magnetic field from a power line using a passive loop conductor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study presents in a tutorial manner methods of the calculation of magnetic fields in vicinity of overhead electric power lines without and with mitigation loops. Exact and simplified methods of the determination of the magnetic field of a straight overhead conductor based on the Fourier transform technique are presented. The decomposition of the magnetic fields in two components: magnetic field obtained in free space from the Biot-Savart law and the magnetic field produced by earth current is discussed. It is shown that in practical cases the effects from earth currents can be neglected as compared with effects from line currents. Moreover the mitigation effects due to the passive loop are also investigated, whereas the mitigation loop can be treated as a rectangular loop (two-conductor closed mitigation loop) located near the power line horizontal or non-parallel to the earth surface.
Rocznik
Tom
Strony
46--63
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • Poznań University of Technology, 60-965 Poznań, ul. Piotrowo 3a
  • Poznań University of Technology, 60-965 Poznań, ul. Piotrowo 3a
Bibliografia
  • [1] Walling RA., Paserba JJ., Burns CW. Series-capacitor compensated shield scheme for enhanced mitigation of transmission line magnetic fields. IEEE Transactions on Power Delivery 1993; 8: 461-468.
  • [2] Jonsson U., Larsson A., Sjödin JO. Optimized reduction of the magnetic field near Swedish 400 kV lines by advanced control of shield wire currents. test result and economic evaluation. IEEE Transactions on Power Delivery 1994; 2: 961-969.
  • [3] Pettersson P. Principles in transmission line magnetic field reduction. IEEE Transactions on Power Delivery 1996; 11: 1587-1593.
  • [4] Memari AR., Janischewskyj W. Mitigation of magnetic field near power lines. IEEE Transactions on Power Delivery 1996; 11: 1577-1586.
  • [5] Yamazaki K., Kawamoto T., Fujinami H. Requirements for power line magnetic field mitigation using a passive loop conductor. IEEE Transactions on Power Delivery 2000; 15: 646-651.
  • [6] Cruz P., Izquierdo C., Burgos M., Ferrer LF., Soto F., Llanos C., Pacheco JD. Magnetic field mitigation in power lines with passive and active loops. CIGRE Session, Paris, France, 2002 ; Paper no. 36-107.
  • [7] Cruz P. Reduction of magnetic fields from overhead medium voltage lines. Round Table on Magnetic Field Mitigation Methods, CIRED 2003, Barcelona, Spain, 2003: 1-6.
  • [8] Cruz P., Izquierdo C., Burgos M. Optimum passive shields for mitigation of power lines magnetic field. IEEE Transactions on Power Delivery 2003; 18: 1357-1362.
  • [9] Metwally IA., Heidler F., A study of EMF mitigation underneath power lines and lightning-shielding enhancement by extra ground wires. European Transactions on Electrical Power 2004; 14: 21-40.
  • [10] Memari AR. Optimal calculation of impedance of an auxiliary loop to mitigate magnetic field of a transmission line. IEEE Transactions on Power Delivery 2005; 20: 844-850.
  • [11] Cruz P., Riquelme JM., Villa A., Martinez JL. Ga-based passive loop optimization for magnetic field mitigation of transmission lines. Neurocomputing 2007; 70: 2679-2686.
  • [12] Cruz P., Riquelme JM., Lopez JC., Villa A., Martinez JL. A comparative analysis of passive loop-based magnetic field mitigation of overhead lines. IEEE Transactions on Power Delivery 2007; 22: 1773-1781.
  • [13] Faria JB., Almeida ME. Accurate calculation of magnetic-field intensity due to overhead power lines with or without mitigation loops with or without capacitor compensation. IEEE Transactions on Power Delivery 2007; 22: 951-959.
  • [14] Saied M. Assessment and optimal passive-loop mitigation of power lines‘ magnetic fields. 2008 Asia-Pacific Symposium on Electromagnetic Compatibility & 19th International Zurich Symposium on Electromagnetic Compatibility 2008, Singapore: 807-810.
  • [15] Adel Z. El Dein. Mitigation of magnetic field under Egyptian 500 kV overhead transmission line. Proc. of the World Congress on Engineering 2010, London: Vol. II.
  • [16] Budnik K., Machczynski W.: Contribution to studies on calculation of the magnetic field under power lines. European Transactions on Electrical Power ETPE 2006: 345-364.
  • [17] Carson JR. Wave propagation in overhead wires with ground return. Bell System Technical Journal 1926, 5: 539-554.
  • [18] Gradshteyn I.S., Ryzhik I.M. Table of Integrals, Series and Products. Academic Press: New York, 1965.
  • [19] Deri A., Tevan G., Semlyen A., Castanheira A. The complex ground return plane a simplified model for homogeneous and multi-layer earth return. IEEE Transactions on Power Apparatus and Systems 1981; 100: 3686-3693.
  • [20] Olsen RG., Pankaskie TA. On the exact, Carson and image theories for wires at or above the earth’s interface. IEEE Transactions on Power Apparatus and Systems 1983; 102: 769-778.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ddd54027-889f-4ceb-a419-bcec39f9ae95
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.