PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Integration of navigation, vision, and arm manipulation towards elevator operation for laboratory transportation system using mobile robots

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the automated environments, mobile robots play an important role to perform different tasks such as objects transportation and material handling. In this paper, a new method for a glassy elevator handling system based on H20 mobile robots is presented to connect distributed life science laboratories in multiple floors. Various labware and tube racks have to be transported to different workstations. Locating of elevator door, entry button detection, internal buttons recognition, robot arm manipulation, current floor estimation, and elevator door status checking are the main operations to realize a successful elevator handling system. The H20 mobile robot has dual arms where each arm consists of 6 revolute joints and a gripper. The gripper has two degrees of freedom. Different sensors have been employed with the robot to handle these operations such as Intel RealSense F200 vision sensor for entry and internal buttons detection with position estimation. A pressure sensor is used for current floor estimation inside the elevator. Also, an ultrasonic proximity distance sensor is utilized for checking the elevator door status. Different strategies including HSL color representation, adaptive binary threshold, optical character recognition, and FIR smoothing filter have been employed for the elevator operations. For pressing operation, a hand camera base and a new elevator finger model are designed. The elevator finger is resolved in a way to fit the arm gripper which is used also to manipulate the labware containers. The Kinematic solution is utilized for controlling the arms’ joints. A server/client socket architecture with TCP/IP command protocol is used for data exchange between Multi-Floor System and the H20 robot arms. Many experiments were conducted in life science laboratories to validate the developed systems. Experimental results prove an efficient performance with high success rate under different lightening condition.
Twórcy
  • Center for Life Science Automation (celisca), University of Rostock, Rostock 18119, Germany, 2- College of Engineering, University of Mosul, Mosul, Iraq
autor
  • Center for Life Science Automation (celisca), University of Rostock, Rostock 18119, Germany
autor
  • Institute of Automation, University of Rostock, Rostock 18119, Germany
autor
  • Center for Life Science Automation (celisca), University of Rostock, Rostock 18119, Germany
Bibliografia
  • [1] M. Wojtczyk, A. Knoll, “Utilization of a mobile manipulator for automating the complete sample management in a biotech laboratory. A real world application for service Robotics.” In: 6th International Symposium on Mechatronics and its Applications, 2009. ISMA ’09, 2009, 1–9. DOI: 10.1109/ISMA.2009.5164800.
  • [2] H. Liu, N. Stoll, S. Junginger, K. Thurow, “Mobile robotic transportation in laboratory automation: Multi-robot control, robot-door integration and robot-human interaction.” In: 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2014, 1033–1038. DOI: 10.1109/ROBIO.2014.7090468.
  • [3] B. Siemiątkowska, B. Harasymowicz-Boggio, M. Wiśniowski, “The Application of Mobile Robots for Building Safety Control,” J. Autom. Mob. Robot. Intell. Syst., vol. 10, 2016, no. 02, 9–14. DOI: 10.14313/JAMRIS_2-2016/11.
  • [4] D. Troniak et al., “Charlie Rides the Elevator –Integrating Vision, Navigation and Manipulation towards Multi-floor Robot Locomotion.” In: 2013 International Conference on Computer and Robot Vision (CRV), 2013, 1–8. DOI: 10.1109/CRV.2013.12.
  • [5] J.-G. Kang, S.-Y. An, S. Oh, “Navigation strategy for the service robot in the elevator environment.”In: International Conference on Control, Automation and Systems, 2007. ICCAS ’07, 2007, 1092–1097.
  • [6] X. Yu, L. Dong, L. Li, K. E. Hoe, “Lift-button detection and recognition for service robot in buildings.”In 2009 16th IEEE International Conference on Image Processing (ICIP), 2009, 313–316. DOI: 10.1109/ICIP.2009.5413667.
  • [7] Chen L.-K., Hsiao M.-Y., “Control of service robot by integration of multiple intermittent sensors.”In: AMPT 2013, Taipei; Taiwan, 2014, vol. 939, 609–614. DOI: 10.4028/www.scientific.net/AMR.939.609.
  • [8] K. Maneerat, C. Prommak, K. Kaemarungsi, “Floor estimation algorithm for wireless indoor multi-story positioning systems.” In: 2014 11th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 2014, 1–5. DOI: 10.1109/ECTICon.2014.6839893.
  • [9] L. Chen, B. Sun, X. Chang, “MS5534B Pressure Sensor and Its Height Measurement Applications.” In: 2011 International Conference on Information Technology, Computer Engineering and Management Sciences (ICM), 2011, vol. 1, 56–59. DOI: 10.1109/ICM.2011.276.
  • [10] C. Lee, M. Ziegler, “Geometric Approach in Solving Inverse Kinematics of PUMA Robots,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-20, no. 6, Nov. 1984,695–706. DOI: 10.1109/TAES.1984.310452.
  • [11] T. Ho, C.-G. Kang, S. Lee, “Efficient closed-form solution of inverse kinematics for a specific six-DOF arm,” Int. J. Control Autom. Syst., vol. 10, no. 3, 567–573, Jun. 2012. DOI: 10.1007/s12555-012-0313-9.
  • [12] C. Man, X. Fan, C. Li, Z. Zhao, “Kinematics Analysis Based on Screw Theory of a Humanoid Robot,”J. China Univ. Min. Technol., vol. 17, no. 1, 49–52, Mar. 2007.
  • [13] G. Tevatia, S. Schaal, “Inverse kinematics for humanoid robots.” In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), 2000, vol. 1, 294–299. DOI: 0.1109/ROBOT.2000.844073.
  • [14] M. Mistry, J. Nakanishi, G. Cheng, S. Schaal, “Inverse kinematics with floating base and constraints for full body humanoid robot control.” In: Humanoids 2008 – 8th IEEE-RAS International Conference on Humanoid Robots, 2008, 22–27. DOI: 10.1109/ICHR.2008.4755926.
  • [15] L. Nie, Q. Huang, “Inverse kinematics for 6-DOF manipulator by the method of sequential retrieval.”In: the Proceedings of the International Conference on Mechanical Engineering and Material Science, China, 2012, 255–258.
  • [16] X. Gu, S. Neubert, N. Stoll, K. Thurow, “Intelligent scheduling method for life science automation systems.” In: 2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), 2016, 156–161. DOI: 10.1109/MFI.2016.7849482.
  • [17] A. A. Abdulla, H. Liu, N. Stoll, K. Thurow, “A New Robust Method for Mobile Robot Multifloor Navigation in Distributed Life Science Laboratories,”J. Control Sci. Eng., vol. 2016, Jul. 2016. DOI:10.1155/2016/3589395.
  • [18] M. M. Ali, H. Liu, N. Stoll, K. Thurow, “Kinematic Analysis of 6-DOF Arms for H20 Mobile Robots and Labware Manipulation for Transportation in Life Science Labs,” J. Autom. Mob. Robot. Intell. Syst., vol. 10, no. 4, 2016. DOI: 10.14313/JAMRIS_4-2016/30.
  • [19] A. A. Abdulla, H. Liu, N. Stoll, K. Thurow, “An automated elevator management and multi-floor estimation for indoor mobile robot transportation based on a pressure sensor.” In: 2016 17th International Conference on Mechatronics – Mechatronika (ME), 2016, 1–7.
  • [20] H. Liu, N. Stoll, S. Junginger, K. Thurow, “Human face orientation recognition for intelligent mobile robot collision avoidance in laboratory environments using feature detection and LVQ neural networks.” In: 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2015, 2003–2007. DOI: 10.1109/ROBIO.2015.7419067.
  • [21] M. M. Ali, H. Liu, R. Stoll, K. Thurow, “Multiple Lab Ware Manipulation in Life Science Laboratories using Mobile Robots.” In: 2016 17th International Conference on Mechatronics(ME2016), Prague, Czech Republic, 2016.
  • [22] M. M. Ali, H. Liu, N. Stoll, K. Thurow, “An identification and localization approach of different labware for mobile robot transportation in life science laboratories.” In: 2016 IEEE 17th International Symposium on Computational Intelligence and Informatics (CINTI), 2016, 000353–000358. DOI: 10.1109/CINTI.2016.7846432.
  • [23] M. Ghandour, H. Liu, N. Stoll, K. Thurow, “A Hybrid Collision Avoidance System for Indoor Mobile Robots based on Human-Robot Interaction.” In: 2016 17th International Conference on Mechatronics(ME2016), Prague, Czech Republic, 2016.
  • [24] “Dr Robot Inc.: WiFi 802.11 robot, Network-based Robot, robotic, robot kit, humanoid robot, OEM solution.” [Online]. Available: http://www.drrobot.com/products_H20.asp. [Accessed: 19-Jan-2015].
  • [25] X. Chu, T. Roddelkopf, H. Fleischer, N. Stoll, M. Klos, K. Thurow, “Flexible robot platform for sample preparation automation with a user--friendly interface,” in 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2016, 2033–2038. DOI: 10.1109/ROBIO.2016.7866628.
  • [26] J. Denavit, R. S. Hartenberg, “A kinematic notation for lower-pair mechanisms based on matrices,” Trans. ASME Journal, 1955, vo. 22, 215–221.
  • [27] M. M. Ali, H. Liu, N. Stoll, K. Thurow, “Intelligent arm manipulation system in life science labs using H20 mobile robot and Kinect sensor.” In: 2016 IEEE 8th International Conference on Intelligent Systems (IS), 2016, 382–387. DOI: 10.1109/IS.2016.7737449.
  • [28] M. A. Ali, H. A. Park, C. G. Lee, “Closed-form inverse kinematic joint solution for humanoid robots.”In: Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, 2010, 704–709. DOI: 10.1109/IROS.2010.5649842.
  • [29] R. O’Flaherty et al., “Kinematics and Inverse Kinematics for the Humanoid Robot HUBO2+,” Georgia Institute of Technology, Technical Report, 2013.
  • [30] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” Int. J. Comput. Vis., vol. 60, no. 2, Nov. 2004, 91–110. DOI: 10.1023/B:VISI. 0000029664.99615.94.
  • [31] E. Rosten, R. Porter, T. Drummond, “Faster and Better: A Machine Learning Approach to Corner Detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 1, Jan. 2010, 105–119. DOI: 10.1109/TPAMI.2008.275.
  • [32] E. Rublee, V. Rabaud, K. Konolige, G. Bradski, “ORB: An efficient alternative to SIFT or SURF.” In: 2011 International Conference on Computer Vision, 2011, 2564–2571. DOI: 10.1109/ICCV.2011.6126544.
  • [33] H. Bay, A. Ess, T. Tuytelaars, L. Van Gool, “Speeded-Up Robust Features (SURF),” Comput. Vis.Image Underst., vol. 110, no. 3, 346–359, Jun.2008.
  • [34] A. A. Abdulla, H. Liu, N. Stoll, K. Thurow, “A Robust Method for Elevator Operation in Semioutdoor Environment for Mobile Robot Transportation System in Life Science Laboratories.” In: International Conference on Intelligent Engineering Systems (INES), 2016 IEEE International, Budapest, Hungary, 2016, 45–50
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ddd3072c-4d07-4111-89bf-aec7721a9598
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.