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1. Introduction 

For events involved in Poisson Stochastic Processes, 
analysts may often be interested in calculating, 
within a determined interval of time, the probability 

of the thk occurrence of a sequence of double-
events. This problem is generally identified under the 
title “Double Stochastic Poisson Process-DSPP” or 
“Modulated Poisson Process-MPP”. 
The DSPP are used in many fields such as: 
nucleation and microstructure growth in materials, 
[1], Narrow-Band process, [2], financial risk 
analysis, [3] [4], Sequential detection theory, [5] [6] 
[7], rainfall modelling, [8], in optics to model the 
sequences of photoelectrons under detection, [9], 
population biology, [10] and software reliability, 
[11]. The subject is of high interest such that many 
researchers develop software and numerical methods 
to fit observations with DSPP covering a wide 
spectrum of applications. An almost exhaustive 
account, of the most popular methods, is given in 
[12] and methods are benchmarked. P. Salvador, R. 
Valadas, and A. Pacheco, [13], developed an 
efficient algorithm of fitting in order to estimate 
accurately queuing behaviour for network traffic 
exhibiting long-range dependence behaviour. 
Beyond the DSPP, higher order Stochastic Poisson 
Processes can be involved in varying fields such as: 

DNA sequences and gene time expression modelling, 
[14][15]. 
We are mainly interested in developing an analytical 
solution for the Probability Distribution Function 
(PDF) of the occurrence of a given sequence of n-
ordered events k-times within a defined interval of 
time. Here, events have constant occurrence rates 
(Poisson Stochastic Processes). In the case of two-
event sequences, we demonstrate that the PDF of the 

thk  occurrence can be generated using some 
generating functions. As these generating functions 

allow determining the PDF of the thk  occurrence, 
)(tPk , as a function of the number of repetition of 

the sequence. Subsequently, it may be called Spectral 
Probability Generating Functions. The PDF can alos 
be called Spectral probability Functions (SPF). The 
SPF’s do, in some way, determine the relative weight 
of each number of repetitions of a given sequence. 
We are going to demonstrate that the )(tPk , can be 

expressed on the following form: 
 

   )(tPk  = t
k et λ−Ψ ).(  - t

k et µ−Φ ).(                (1) 
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Abstract 

Assessing the Occurrence Probability of a given sequence of events in a determined order is necessary in many 
scientific fields. That is the case in the following fields: nucleation and microstructure growth in materials, 
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Where, )(tkΨ  and )(tkΦ  are polynomials of order 

k , λ  and µ  are the constant occurrence rate of the 
1st and the 2nd events, respectively. 
A more general analytical solution covering 
sequences of k-independent events (Multi-Stochastic 
Poisson Process) is under investigations. 
The idea of decomposing the solution of Birth-Death 
problems (with/without killing) with the help of 
polynomials has appeared early, [16][17]. Since, the 
subject continue to receive the interest of many 
researchers, [18][19][20]. In a very synthetic and 
interesting paper, [21], Langovoy gives a general 
count of the use of the special algebraic polynomials 
in solving stochastic integrals. 
Some researchers may describe this “decomposing 
potential” in different terms. Peccati, [22], presents 
the DSPP rather as a polynomial of degree 2 in m 
variables (Poisson-Charlier polynomials). He was 
trying to characterize the convergence of the 
distribution towards a bi-variable Gaussian law. This 
a-priori assumption (a bi-variable Gaussian Law) did 
certainly limit his essay and did not allow 
investigating other options. 
Bartlomiej Blaszczyszyn and René Schott, [23], have 
also proved that the intensity measure of the Voronoi 
tessellation of Euclidian space which is generated by 
an inhomogeneous Poisson point process admits an 
approximate “decompositions formula”. Many 
similar aspects can be underlined between the 
“approximating decomposition formula” given in 
[23] and the exact solution given her for the k-
succession of the DSPP. 
It is not the aim of the paper to present an historical 
and complete count of the use of polynomials to 
solve the stochastic integral describing the DSPP. 
The unique subject of the paper is: to demonstrate 
the existence of an analytical solution to the 
stochastic integral describing the thk  occurrence of a 
DSPP and to demonstrate that the solution may be 
generated using some-well defined polynomials of 

thk  order. The solution of the Stochastic Integral 
using the formula we present will be called “Spectral 
Probability Functions, SPF”. 
 
2. General description 

The stochastic events “a ” and “b ” obey to a 
homogeneous Poison Process and are characterised 
by their occurrence rate, respectively, λ  1−h  for “ a ” 
and µ  1−h  for “ b ”. An initiating event T  occurs 

when a  and b  occur in the given order “a  then b ”. 
The PDF, )(tPk , determines the probability of 

having the sequence “a  then b ” occurring only “k” 
times within the interval [ t,0 ]. It is described by 

following stochastic integral: 
 
   )(tPk  =  
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where, ,...3,2,1=k  and tetP λ−=)(0  

In order to generate the PDF )(tPk , we propose 

using another function, )(tFk , defined as: 

 

   )(tFk  = ( )t
k etP λ).( , )(0 tF  = 1. 

 
3. Solution of the stochastic integral 

We demonstrate in [24] that the stochastic integral, 
Eq.(2), may have the following solution: 
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where   
 
   σ  = )( λµ − . 
 
We can then distinguish two polynomials )( tk σΨ  

and )( tk σΦ , defined as following: 
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Where, 
 
   kC0  =1, 
 
   kB0  =0 0≥k  
 
   k

kC  = k
kB , 

 
   k

kB  = k
k

k
k BC 11 −− + , 1≥k  
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   k
jC 1−  = 1

12
−
−− + k

j
k
j CC , 

 
   k

jB 1−  = 1
12

−
−− + k

j
k
j BB  , 2≥≥ jk  

 
We illustrate some numerical values of the 

coefficients k
jC  and k

jB  in Table 1 and Table 2 

below. 

Table 1. some numerical values of Coefficient kjC  

J= 0 1 2 3 4 5 6 

0
jC  1       

1
jC  1 1      

2
jC  1 2 3     

3
jC  1 3 6 10    

4
jC  1 4 10 20 35   

5
jC  1 5 15 35 70 126  

6
jC  1 6 21 56 126 252 462 

 

Table 2. some numerical values of Coefficient kjB  

J= 0 1 2 3 4 5 6 

0
jB  0       

1
jB  0 1      

2
jB  0 1 3     

3
jB  0 1 4 10    

4
jB  0 1 5 15 35   

5
jB  0 1 6 21 56 126  

6
jB  0 1 7 28 84 210 462 

 
4. Application 

In some future industrial power system, an undesired 
initiating event would occur if two events a  and b  
occur in the given order a  then b . The event a  
(pressure higher than 160 bars for few minutes) is 

characterised by an occurrence rate equal to 510− /h. 
The event b  (temperature higher than 750 °C for 
few minutes) is characterised by an occurrence rate 
equal to 310− /h. Both basic events are independent. 

The safety level of the power system can tolerate a 
limited occurrence of this initiating event within a 
given interval of time. Still, we should determine it. 
The detection of this event is difficult to carry out. 
We should asses the safety of the power system as a 
function of the probability of the thk occurrence of 
the initiating event over an interval of 6 months (full 
nominal operation). The 2nd aim is to optimize the 
detection rate of the detection system to be designed. 
The probability of the thk occurrence of this initiating 
event over an interval of 6 months (full nominal 
operation) is calculated using the spectral probability 
function kP  given in Eq.(3) and the figures are given 

in Table 3, below. 
 

Table 3. probability of the thk occurrence over an 
interval of 6 months 

k  1 2 3 4 5 

kp
 

210*3.3 −  410*7.3 −  610*9.1 −  910*0.6 −  1110*2.1 −  

 
The profile of the Spectral Probability kP  with the 

time is given in Figure 1, as well. We can evaluate 
some interesting characteristics such as the most 
probable time interval for each occurrence order k . 
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Figure 1. The Spectral Probability Functions up to 
6=k  

 
5. Conclusions 

The stochastic integral describing the probability of 
the thk  occurrence of a double Poisson process has 
an analytical solution on the form of Spectral 
Polynomials. That is of great interest in Spectral 
Analysis & Optimisation activities in Risk & System 
Safety.  
In future industrial systems, the concept of “tolerance 
to failures” requires the establishment of models 
allowing the determination of the occurrence 
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probabilities of the initiating events as functions of 
the repetition order of the undesired sequences. We 
do “Spectral Analysis”. 
The author is attempting to extend these spectral 
models to sequences comprising more than double 
stochastic Poisson events. However, attempts are not 
successful up to now. 
Admitting the possibility that an “Initiating Events” 
may be repetitive is equal to “admitting the system 
tolerance to some sets of undesired sequences”. 
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