PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structural role of exon-coded fragments in proteins

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article describes the role of protein fragments encoded by individual exons. Structural analysis of the hydrophobic core on the basis of the “fuzzy oil drop” model – in whole molecules as well as in fragments encoded by specific exons – indicates that, in each protein, at least one exon encodes a fragment, which is consistent with the theoretical distribution of hydrophobicity density. Quantitative assessment of the properties of such exons in selected proteins enables the model to be applied in identifying the structural (stabilizing) role of polypeptide chains encoded by individual exons. This is viewed as a preliminary step toward future exploitation of this technique in studying the alternative splicing phenomenon.
Rocznik
Strony
103--114
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, Kraków, Poland
autor
  • Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, Kraków, Poland
  • Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
autor
  • Chair of Medical Biochemistry, Medical College, Jagiellonian University, Kraków, Poland
autor
  • Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, Łazarza 16, 31-530 Kraków, Poland
Bibliografia
  • 1. Kauzmann W. Some factors in the interpretation of protein denaturation. Adv Protein Chem 1959;14:l-63.
  • 2. Schmitz J, Brosius J. Exonization of transposed elements: a challenge and opportunity for evolution. Biochimie 2011;93:1928-34.
  • 3. Maniatis T, Tasic B. Alternative pre-mRNA splicing and proteome expansion in metazoans. Nature 2002 418: 236-43.
  • 4. Chang WC, Chen HH, Tarn WY. Alternative splicing of U12-type introns. Front Biosci 2008;13:1681-90.
  • 5. Black DL. Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 2003;72:291-336.
  • 6. Gelly JC, Lin HY, de Brevern AG, ChuangTJ, Chen FC. Selective constraint on human pre-mRNA splicing by protein structural properties. Genome Biol Evol 2012;4:966-75.
  • 7. Muhammad N, DworeckT, Fioroni M, Schwaneberg U. Engineering of the E. coli outer membrane protein FhuA to overcome the hydrophobic mismatch in thick polymeric membranes. J Nanobiotechnol 2011;9:8.
  • 8. Neklesa TK, Tae HS, Schneekloth AR, Stulberg MJ, Corson TW, SundbergTB, etal. Small-molecule hydrophobic tagging-induced degradation of HaloTag fusion proteins. Nat Chem Biol 2011;7:538-43.
  • 9. Siglioccolo A, Paiardini A, Piscitelli M, Pascarella S. Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface. BMC Struct Biol 2011;11:50.
  • 10. Li L, Zhang Y, Zou L, Li C, Yu B, Zheng X, et al. An ensemble classifier for eukaryotic protein subcellular location prediction using gene ontology categories and amino acid hydrophobicity. PLoS One 2012;7:e31057.
  • 11. Shao Q, Wei H, Gao YQ. Effects of turn stability and side-chain hydrophobicity on the folding of p-structures. J Mol Biol 2010;402:595-609.
  • 12. Piwowar M, Krzysztof P, Piotr P. ExonVisualiser – application for visualization exon units in 2D and 3D protein structures. Bioinformation 2012:8:1280-2.
  • 13. Biswas KM, DeVido DR, Dorsey |G. Evaluation of methods for measuring amino acid hydrophobicities and interactions. J Chromatogr A 2003;1000:637-55.
  • 14. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol 1982;157:105-32.
  • 15. Eisenberg D. Three-dimensional structure of membrane and surface proteins. Annu Rev Biochem 1984:53:595-623.
  • 16. Rose GD, Wolfenden R. Hydrogen bonding, hydrophobicity, packing, and protein folding. Annu Rev Biomol Struct 1993:22:381-415.
  • 17. Janin J. Surface and inside volumes in globular proteins. Nature 1979:277:491-2.
  • 18. Rose GD, GeselowitzAR, Lesser GJ, Lee RH, Zehfus MH. Hydrophobicity of amino acid residues in globular proteins. Science 1985:229:834-8.
  • 19. Wolfenden R, Andersson L, Cullis PM, Southgate CC. Affinities of amino acid side chains for solvent water. Biochemistry 1981;20:849-55.
  • 20. Aboderin A. An empirical hydrophobicity scale for ct-amino-acids and some of its applications. Int) Biochem 1971;2:537-44.
  • 21. Konieczny L, Brylinski M, Roterman I. Gauss-function-based model of hydrophobicity density in proteins. In Silico Biol 2006;6:15-22.
  • 22. Levitt M. A simplifed representation of protein conformations for rapid simulation of protein folding. J Mol Biol 1976:104:59-107.
  • 23. Kullback S, Leibler RA. On Information and Sufficiency. Ann Math Stat 1951;22:79-86.
  • 24. PDBsum. Available from: http://www.ebi.ac.uk/pdbsum/Accessed on 21 January, 2013.
  • 25. Banach M, Konieczny L, Roterman I. Ligand-binding-site recognition. In: Roterman-Konieczna I, editor. Protein folding in silico. Oxford, UK: Woodhead Publishing, 2012:78-94.
  • 26. Piwowar M, Banach M, Konieczny L, Roterman I. Hydrophobic core formation in protein complex. J Biomol Struct Dyn 2013.DOI: 10.1080/07391102.2013.801784 [Epub ahead of print].
  • 27. Piwowar M, Banach M, Konieczny L, Chomilier J, Roterman I. Structural role of exons in haemoglobin. Bio-Algorithms Med-Syst 2013:9:81-90.
  • 28. Piwowar M, Banach M, Konieczny L, Roterman I. Structural role of exon-coded fragments of polypeptide chains in selected enzymes. J Theor Biol 2013. DOI: 10.1016/j.jtbi.2013.07.016 [Epub ahead of print].
  • 29. Krishna Kumar K, Dickson CF, Weiss MJ, Mackay JP, Gell DA. AHSP (ct-haemoglobin-stabilizing protein) stabilizes apo-oc-haemoglobin in a partially folded state. Biochem J 2010:432:275-82.
  • 30. Nasimuzzaman M, Khandros E, WangX, KongY, Zhao H, Weiss D, et al. Analysis of alpha hemoglobin stabilizing protein overexpression in murine (3-thalassemia. Am J Hematol 2010:85:820-2.
  • 31. Yu X, Kong Y, Dore LC, Abdulmalik 0, Katein AM, Zhou S, et al. An erythroid chaperone that facilitates folding of ct-globin subunits for hemoglobin synthesis. J Clin Invest 2007:117: 1856-65.
  • 32. BrilletT, Baudin-Creuza V, Vasseur C, Domingues-Hamdi ED, Kiger L, Wajcman H, et al. ct-Hemoglobin stabilizing protein (AHSP), a kinetic scheme of the action of a human mutant, AHSPV56G. J Biol Chem 2010;285:17986-92.
  • 33. Strandberg B. Chapter 1: building the ground for the first two protein structures: myoglobin and haemoglobin. J Mol Biol 2009:392:2-10.
  • 34. Mollan TL, Yu X, Weiss MJ, Olson JS. The role of alpha-hemoglobin stabilizing protein in redox chemistry, denaturation, and hemoglobin assembly. Antioxid Redox Signal 2010;12:219-31.
  • 35. Pesce A, Milani M, Nardini M, Bolognesi M. Mapping heme-ligand tunnels in group I truncated(2/2) hemoglobins. Methods Enzymol 2008;36:303-15.
  • 36. Prymula K, JadczykT, Roterman I. Catalytic residues in hydrolases: analysis of methods designed for ligand-binding site prediction. J Comput Aided Mol Des 2011:25:117-33.
  • 37. Pan Q, Shai 0, Lee LJ, Frey BJ, Blencowe BJ. (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 2008:40:1413-5.
  • 38. Roterman I, Konieczny L, Jurkowski W, Prymula K, Banach M. Two-intermediate model to characterize the structure of fast-folding proteins. J Theor Biol 2Oll;283:6O-7O.
  • 39. Banach M, Prymula K, Jurkowski W, Konieczny L, Roterman I. Fuzzy oil drop model to interpret the structure of antifreeze proteins and their mutants. J Mol Model 2012;18:229-37.
  • 40. Banach M, Marchewka D, Piwowar M, Roterman I. The divergence entropy characterizing the internal force field in proteins. In: Roterman-Konieczna I, editor. Protein folding in silico. Oxford, UK: Woodhead Publishing, 2012:55-78.
  • 41. Atejster P, Banach M, Jurkowski W, Marchewka D, Roterman I. Comparative analysis of techniques oriented on the recognition of ligand binding area in proteins. In: Roterman-Konieczna I, editor. Identification of ligand binding site and protein-protein interaction area. Dordrecht: Springer, 2013: 55-86.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ddd1c3fc-2fbe-4371-91f4-7f295f500653
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.