PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mathematical model for friction stir lap welded AA5052 and SS304 joints and process parameters optimization for high joint strength

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to the numerous challenges faced during the dissimilar welding, choosing the right process parameters and their optimization yields better results. In this context, the current investigation is focused on the optimization of process parameters. Taguchi's L9 orthogonal array was selected to carry out the experimental investigations. The welded samples were tested for shear strength, and the results were analysed using Taguchi's S/N ratio analysis with "larger the better" criteria. Log-linear regression analysis was applied to formulate an empirical correlation between the process parameters and shear strength. According to S/N ratio analysis, the tool rotational speed of 800 rpm, welding speed of 20 mm/min and a penetration depth of 4.1 mm are the optimized parameters that achieve high joint strength. The achieved joint strength was 3.46 kN that is 70% of the base aluminium metal. It was noticed from the Analysis of variance of the regression model that penetration depth and tool rotational speed are the significant contributors with p-values less than 0.5. Confirmation tests show that the error between the predicted and calculated shear strength is 2.06% which is considered acceptable. R2 and adjusted R2 values of the model with a standard error of 0.076 show that the developed model is statistically significant.
Rocznik
Strony
5--22
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
  • Universiti Teknologi PETRONAS, Perak, Department of Mechanical Engineering, 32610, Malaysia
  • Universiti Teknologi PETRONAS, Perak, Department of Mechanical Engineering, 32610, Malaysia
  • Universiti Teknologi PETRONAS, Perak, Department of Mechanical Engineering, 32610, Malaysia
Bibliografia
  • 1. V. Chitturi, S.R. Pedapati, M. Awang, Challenges in dissimilar friction stir welding of aluminum 5052 and 304 stainless steel alloys, Materialwissenschaft Und Werkstofftechnik. 51 (2020) 811–816. https://doi.org/10.1002/mawe.201900234.
  • 2. R. Rai, A. De, H.K.D.H. Bhadeshia, T. DebRoy, Review: friction stir welding tools, Science and Technology of Welding and Joining. 16 (2011) 325–342. https://doi.org/10.1179/1362171811Y.0000000023.
  • 3. M.K. Bilici, Application of Taguchi approach to optimize friction stir spot welding parameters of polypropylene, Materials & Design. 35 (2012) 113–119. https://doi.org/10.1016/j.matdes.2011.08.033.
  • 4. M. Tutar, H. Aydin, C. Yuce, N. Yavuz, A. Bayram, The optimisation of process parameters for friction stir spot-welded AA3003-H12 aluminium alloy using a Taguchi orthogonal array, Materials & Design. 63 (2014) 789–797. https://doi.org/10.1016/j.matdes.2014.07.003.
  • 5. S. Singh, G. Singh, C. Prakash, R. Kumar, On the mechanical characteristics of friction stir welded dissimilar polymers: statistical analysis of the processing parameters and morphological investigations of the weld joint, The Journal of the Brazilian Society of Mechanical Sciences and Engineering. 42 (2020) 154. https://doi.org/10.1007/s40430-020-2227-4.
  • 6. N. Muhammad, Y.H.P. Manurung, M. Hafidzi, S.K. Abas, G. Tham, E. Haruman, Optimization and modeling of spot welding parameters with simultaneous multiple response consideration using multi-objective Taguchi method and RSM, Journal of Mechanical Science and Technology. 26 (2012) 2365–2370. https://doi.org/10.1007/s12206-012-0618-x.
  • 7. R.K. Roy, A primer on the Taguchi method, 2nd ed, Society of Manufacturing Engineers, Dearborn, MI, 2010.
  • 8. Y. Javadi, S. Sadeghi, M.A. Najafabadi, Taguchi optimization and ultrasonic measurement of residual stresses in the friction stir welding, Materials & Design. 55 (2014) 27–34. https://doi.org/10.1016/j.matdes.2013.10.021.
  • 9. D.G. Mohan, J. Tomków, S. Gopi, Induction assisted hybrid friction stir welding of dissimilar materials AA5052 aluminium alloy and X12Cr13 stainless steel, Advances in Materials Science. 21 (2021) 17–30. https://doi.org/10.2478/adms-2021-0015.
  • 10. S. Rajakumar, C. Muralidharan, V. Balasubramanian, Optimization of the friction-stir-welding process and tool parameters to attain a maximum tensile strength of AA7075–T 6 aluminium alloy, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 224 (2010) 1175–1191. https://doi.org/10.1243/09544054JEM1802.
  • 11. Q. Wen, W.Y. Li, W.B. Wang, F.F. Wang, Y.J. Gao, V. Patel, Experimental and numerical investigations of bonding interface behavior in stationary shoulder friction stir lap welding, Journal of Materials Science & Technology. 35 (2019) 192–200. https://doi.org/10.1016/j.jmst.2018.09.028.
  • 12. I. Sabry, A.M. El-Kassas, A.-H.I. Mourad, D.T. Thekkuden, J. Abu Qudeiri, Friction Stir Welding of T-Joints: Experimental and Statistical Analysis, Journal of Manufacturing and Materials Processing. 3 (2019) 38. https://doi.org/10.3390/jmmp3020038.
  • 13. S. Rajakumar, C. Muralidharan, V. Balasubramanian, Statistical analysis to predict grain size and hardness of the weld nugget of friction-stir-welded AA6061-T6 aluminium alloy joints, The International Journal of Advanced Manufacturing Technology. 57 (2011) 151–165. https://doi.org/10.1007/s00170-011-3279-5.
  • 14. K. Elangovan, V. Balasubramanian, S. Babu, Predicting tensile strength of friction stir welded AA6061 aluminium alloy joints by a mathematical model, Materials & Design. 30 (2009) 188–193. https://doi.org/10.1016/j.matdes.2008.04.037.
  • 15. R. Seetharaman, M. Seeman, D. Kanagarajan, P. Sivaraj, I. Saravanan, A statistical evaluation of the corrosion behaviour of friction stir welded AA2024 aluminium alloy, Materials Today: Proceedings. 22 (2020) 673–680. https://doi.org/10.1016/j.matpr.2019.09.066.
  • 16. A. Goyal, R. Garg, Modeling and optimization of friction stir welding parameters in joining 5086 H32 aluminium alloy, Scientia Iranica Transaction B, Mechanical Engineering. 26 (2018) 2407-2417. https://doi.org/10.24200/sci.2018.5525.1325.
  • 17. G.H. Li, L. Zhou, F.Y. Shu, Y.C. Liu, Statistical and metallurgical analysis of dissimilar friction stir spot welded aluminum/copper metals, The Journal of Materials Engineering and Performance. 29 (2020) 1830–1840. https://doi.org/10.1007/s11665-020-04729-6.
  • 18. F. Sarsılmaz, U. Çaydaş, Statistical analysis on mechanical properties of friction-stir-welded AA 1050/AA 5083 couples, The International Journal of Advanced Manufacturing Technology. 43 (2009) 248–255. https://doi.org/10.1007/s00170-008-1716-x.
  • 19. C. Bitondo, U. Prisco, A. Squilace, P. Buonadonna, G. Dionoro, Friction-stir welding of AA 2198 butt joints: mechanical characterization of the process and of the welds through DOE analysis, The International Journal of Advanced Manufacturing Technology. 53 (2011) 505–516. https://doi.org/10.1007/s00170-010-2879-9.
  • 20. T. Babu Rao, Stochastic Tensile Failure Analysis on Dissimilar AA6061-T6 with AA7075-T6 Friction Stir Welded Joints and Predictive Modeling, Journal of Failure Analysis and Prevention. 20 (2020) 1333–1350. https://doi.org/10.1007/s11668-020-00937-3.
  • 21. C.-W. Yang, S.-J. Jiang, Weibull Statistical Analysis of Strength Fluctuation for Failure Prediction and Structural Durability of Friction Stir Welded Al–Cu Dissimilar Joints Correlated to Metallurgical Bonded Characteristics, Materials. 12 (2019) 205. https://doi.org/10.3390/ma12020205.
  • 22. H.-J. Sohn, G.D. Haryadi, S.-J. Kim, Statistical aspects of fatigue crack growth life of base metal, weld metal and heat affected zone in FSWed 7075-T651 aluminium alloy, Journal of Mechanical Science and Technology. 28 (2014) 3957–3962. https://doi.org/10.1007/s12206-014-0906-8.
  • 23. R. Taghiabadi, N. Aria, Statistical Strength Analysis of Dissimilar AA2024-T6 and AA6061-T6 Friction Stir Welded Joints, The Journal of Materials Engineering and Performance. 28 (2019) 1822–1832. https://doi.org/10.1007/s11665-019-03907-5.
  • 24. M.P. de la Parte, J.C. Azofra, H.D.C. Fals, A.S. Roca, M.C.S. Orozco, E.J. Macías, A new way to predict the mechanical properties of friction stir spot welding for Al-Cu joints by energy analysis of the vibration signals, The International Journal of Advanced Manufacturing Technology. 105 (2019) 1823–1834. https://doi.org/10.1007/s00170-019-04396-5.
  • 25. T. Medhi, Selection of best process parameters for friction stir welded dissimilar Al-Cu alloy: a novel MCDM amalgamated MORSM approach, Journal of the Brazilian Society of Mechanical Sciences and Engineering. (2020) 22.
  • 26. B. Venu, L. Suvarna Raju, K. Venkata Rao, Multiobjective optimization of friction stir weldments of AA2014-T651 by teaching–learning-based optimization, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 234 (2020) 1146–1155. https://doi.org/10.1177/0954406219891755.
  • 27. U. Kumar, I. Yadav, S. Kumari, K. Kumari, N. Ranjan, R.K. Kesharwani, R. Jain, S. Kumar, S. Pal, D. Chakravarty, S.K. Pal, Defect identification in friction stir welding using discrete wavelet analysis, Advances in Engineering Software. 85 (2015) 43–50. https://doi.org/10.1016/j.advengsoft.2015.02.001.
  • 28. M.D. Sameer, A.K. Birru, Optimization and characterization of dissimilar friction stir welded DP600 dual phase steel and AA6082-T6 aluminium alloy sheets using TOPSIS and grey relational analysis, Materials Research Express. 6 (2019) 056542. https://doi.org/10.1088/2053-1591/aafba4.
  • 29. M. Yunus, M.S. Alsoufi, Mathematical Modelling of a Friction Stir Welding Process to Predict the Joint Strength of Two Dissimilar Aluminium Alloys Using Experimental Data and Genetic Programming, Modelling and Simulation in Engineering. 2018 (2018) e4183816. https://doi.org/10.1155/2018/4183816.
  • 30. X. He, F. Gu, A. Ball, A review of numerical analysis of friction stir welding, Progress in Materials Science. 65 (2014) 1–66. https://doi.org/10.1016/j.pmatsci.2014.03.003.
  • 31. R. Hartl, F. Vieltorf, M.F. Zaeh, Correlations between the surface topography and mechanical properties of friction stir welds, Metals. 10 (2020) 890. https://doi.org/10.3390/met10070890.
  • 32. V. Chitturi, S.R. Pedapati, M. Awang, Effect of tilt angle and pin depth on dissimilar friction stir lap welded joints of aluminum and steel alloys, Materials. 12 (2019) 3901. https://doi.org/10.3390/ma12233901.
  • 33. L. Wan, Y. Huang, Microstructure and Mechanical Properties of Al/Steel Friction Stir Lap Weld, Metals. 7 (2017) 542. https://doi.org/10.3390/met7120542.
  • 34. P.J. Ross, Taguchi Techniques For Quality Engineering: Loss Function, Orthogonal Experiments, Parameter And Tolerance Design, Undefined. (1988). /paper/Taguchi-Techniques-For-Quality-Engineering%3A-Loss-Ross/bfc850abde17ffd7ffdf37bcaed67e44c9867c84 (accessed October 20, 2020).
  • 35. A.M. Hassan, M. Almomani, T. Qasim, A. Ghaithan, Statistical analysis of some mechanical properties of friction stir welded aluminium matrix composite, International Journal of Experimental Design and Process Optimisation. 3 (2012) 91. https://doi.org/10.1504/IJEDPO.2012.045616.
  • 36. V. Chitturi, S.R. Pedapati, M. Awang, Investigation of Weld Zone and Fracture Surface of Friction Stir Lap Welded 5052 Aluminum Alloy and 304 Stainless Steel Joints, Coatings. 10 (2020) 1062. https://doi.org/10.3390/coatings10111062.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ddcb25fa-60d8-4d34-a02c-595e46849154
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.