PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pulse chaotic generator based a classical Chua’s circuit

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Impulsowy generator chaotyczny oparty na klasycznym obwodzie Chuy
Języki publikacji
EN
Abstrakty
EN
This article presents circuit realization of the pulse chaotic generator that can be used in digital modern telecommunication systems for masking and decrypt of the information. This generator based a classical Chua’s circuit. The results of computer simulation of a nonlinear element that realizes the chaotic behavior of the classical Chua's circuit are presented. For modelling was used a modern software MultiSim. Also, such basic results as chaotic attractor and time distributions of signals were obtained.
PL
W artykule przedstawiono realizację obwodu impulsowego generatora chaotycznego, który może być stosowany w nowoczesnych cyfrowych systemach telekomunikacyjnych do maskowania i deszyfrowania informacji. Generator ten bazuje na klasycznym obwodzie Chuy. Przedstawiono wyniki symulacji komputerowej nieliniowego elementu realizującego chaotyczne zachowanie klasycznego obwodu Chuy. Do modelowania wykorzystano nowoczesne oprogramowanie MultiSim. Uzyskano również takie podstawowe wyniki jak atraktor chaotyczny i rozkłady czasowe sygnałów.
Słowa kluczowe
Rocznik
Strony
10--14
Opis fizyczny
Bibliogr. 30 poz., rys., wykr.
Twórcy
  • Yuriy Fedkovych Chernivtsi National University, Department of Radio Engineering and Information Security, Chernivtsi, Ukraine
  • Yuriy Fedkovych Chernivtsi National University, Department of Radio Engineering and Information Security, Chernivtsi, Ukraine
  • Department of Applied Mathematics, Lviv Polytechnic National University, Lviv, Ukraine
autor
  • Universiti Sultan Zainal Abidin, Faculty of Informatics and Computing, Campus Besut, Malaysia
  • Universitas Muhammadiyah Tasikmalaya, Department of Mechanical Engineering, Tasikmalaya, Indonesia
  • Articial Intelligence for Sustainability and Islamic Research Center (AISIR), Universiti Sultan Zainal Abidin, Gongbadak, Malaysia
  • ManLab, Technical University of Crete, Greece
autor
  • Department of Theoretical and Industrial Electrical Engineering, Technical University of Kosice, Kosice, Slovakia
Bibliografia
  • [1] Chua L. O.: Chua’s Circuit: An overview ten years later. Journalof Circuits, Systems and Computers 04(02), 1994, 117–159 [https://doi.org/10.1142/s0218126694000090].
  • [2] Chua L. et al.: The double scroll family. IEEE Transactions on Circuits and Systems 33(11), 1986, 1072–1118 [https://doi.org/10.1109/tcs.1986.1085869].
  • [3] Cruz J. M., Chua L. O.: An IC chip of Chua’s Circuit. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 40(10), 1993, 614–625 [https://doi.org/10.1109/82.246162].
  • [4] Kennedy M. P.: Robust op amp realization of Chua’s Circuit. Frequenz 46(3–4), 1992, 66–80 [https://doi.org/10.1515/freq.1992.46.3-4.66].
  • [5] Kopp M. I. et al.: Chaotic dynamics of magnetic fields generated by thermomagnetic instability in a nonuniformly rotating electrically conductive fluid. Journal of Physical Studies 27(2), 2023, 2403 [https://doi.org/10.30970/jps.27.2403].
  • [6] Kopp M., Kopp A.: A new 6D chaotic generator: Computer modelling and circuit design. International Journal of Engineering and Technology Innovation 12(4), 2022, 288–307 [https://doi.org/10.46604/ijeti.2022.9601].
  • [7] Kopp M., Samuilik I.: A New 6D Two-wing Hyperchaotic System: Dynamical Analysis, Circuit Design, and Sinchronization. Chaos Theory and Applications 6(4), 2024, 273–283 [https://doi.org/10.51537/chaos.1513080].
  • [8] Kopp M. I., Samuilik I.: Chaotic dynamics of a new 7D memristor-based generator: computer modeling and circuit design. Mathematical Modeling and Computing 12(1), 2025, 116–131 [https://doi.org/10.23939/mmc2025.01.116].
  • [9] Mamat A. R. et al.: Color image encryption using chaotic-based cryptosystem. Mathematical Modeling and Computing 11(3), 2024, 883–892 [https://doi.org/10.23939/mmc2024.03.883].
  • [10] Matsumoto T.: A chaotic attractor from Chua’s Circuit. IEEE Transactions on Circuits and Systems 31(12), 1984, 1055–1058 [https://doi.org/10.1109/tcs.1984.1085459].
  • [11] Mokin B. et al.: The synthesis of mathematical models of nonlinear dynamic systems using Volterra integral equation. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 12(2), 2022, 15–19 [https://doi.org/10.35784/iapgos.2947].
  • [12] Mokni K. et al.: Complex Dynamics and chaos control in a nonlinear discrete prey-predator model. Mathematical Modeling and Computing 10(2), 2023, 593–605 [https://doi.org/10.23939/mmc2023.02.593].
  • [13] Nuñez-Perez J.-C. et al.: Maximizing the chaotic behavior of fractional order Chen system by evolutionary algorithms. Mathematics 9(11), 2021, 1194 [https://doi.org/10.3390/math9111194].
  • [14] Papadopoulou M. S. et al.: Diverse implementations of the Lorenz system for teaching non-linear chaotic circuits. 9 th International Conference on Information, Communication and Networks (ICICN) 9, 2021, 416–420 [https://doi.org/10.1109/icicn52636.2021.9674018].
  • [15] Rodríguez-Muñoz J. D. Et al.: Chaos-based authentication of encrypted images under MQTT for IoT protocol. Integration 102, 2025, 102378 [https://doi.org/10.1016/j.vlsi.2025.102378].
  • [16] Rusyn V., Skiadas C. H.: Threshold method for control of chaotic oscillations. Springer Proceedings in Complexity, 2020, 217–229 [https://doi.org/10.1007/978-3-030-39515-5_18].
  • [17] Rusyn V. et al.: Computer modelling, analysis of the main information properties of memristor and its application in secure communication system. CEUR Workshop Proceedings 3702, 2024, 216–225.
  • [18] Sidanchenko V. V, Gusev O. Yu: Research on stochastic properties of time series data on chemical analysis of Cast Iron. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 4, 2024, 135–140 [https://doi.org/10.33271/nvngu/2024-4/135].
  • [19] Singh P. K. et al.: An efficient and lightweight image encryption technique using Lorenz chaotic system. Mathematical Modeling and Computing 11(3), 2024, 702–709 [https://doi.org/10.23939/mmc2024.03.702].
  • [20] Slyusarenko Yu. V. et al.: Nonlinear Dynamics of kinetic fluctuations and quasi linear relaxation in plasma. Mathematical Modeling and Computing 10(2), 2023, 421–434 [https://doi.org/10.23939/mmc2023.02.421].
  • [21] Sokil B. I. et al.: Method of normal oscillations and substantiation of the choice of parameters for certain nonlinear systems with two degrees of freedom. Mathematical Modeling and Computing 10(3), 2023, 927–934 [https://doi.org/10.23939/mmc2023.03.927].
  • [22] Voliansky R., Sadovoi A.: Chua’s circuits interval synchronization. International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T), 2017, 439–443 [https://doi.org/10.1109/infocommst.2017.8246434].
  • [23] Voliansky R. et al.: Transformation of 3-D jerk chaotic system into parallel form. 2018 International Symposium on Advanced Intelligent Informatics (SAIN) 1, 2018, 179–184 [https://doi.org/10.1109/sain.2018.8673346].
  • [24] Voliansky R. et al.: Chaotic time-variant dynamical system. 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), 2020, 606–609 [https://doi.org/10.1109/tcset49122.2020.235503].
  • [25] Voliansky R. et al. Chua’s circuit with Nonlinear Energy Storages and its synchronization. IEEE International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo) 870, 2023, 1–6 [https://doi.org/10.1109/ukrmico61577.2023.10380417].
  • [26] Vorobets H. et al.: Features of synthesis and statistical properties of the modified stream encoder with dynamic key correction. 9 th International Conference on Dependable Systems, Services and Technologies (DESSERT) 4, 2018, 153–158 [https://doi.org/10.1109/dessert.2018.8409118].
  • [27] Vorobets H. et al.: Self-reconfigurable cryptographical coprocessor for data streaming encryption in tasks of telemetry and the internet of things. 9 th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS) 9, 2017, 1117–1120 [https://doi.org/10.1109/idaacs.2017.8095259].
  • [28] Wongsa W. et al.: An adaptive differential evolution algorithm with a bound adjustment strategy for solving nonlinear parameter identification problems. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 14(2), 2024, 119–126 [https://doi.org/10.35784/iapgos.5684].
  • [29] Zala A. et al.: Evaluating atrial fibrillations through strange attractors dynamics. General physiology and biophysics 40(5), 2021, 377–386 [https://doi.org/10.4149/gpb_2021016].
  • [30] Zemlianukhina H. et al.: Modeling and simulating of Duffing pendulum in the moved coordinate system. CEUR Workshop Proceedings 3917, 2024, 120–130.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ddcb1093-b872-43a9-b262-7f4cf6096ada
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.