Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Underwater gliders are winged, autonomous underwater vehicles that are broadly applied in physical and biological oceanography. The position of the wing has an important effect on the movement performance of the underwater glider. In this paper, the dynamic motion of a series of underwater glider models with different longitudinal wing positions are simulated, which provides guidance for the design of underwater gliders. The results show that when the net buoyancy is constant, the wing position affects the gliding angle, but does not affect the relationship between the gliding angle and the gliding speed. In addition, the farther the wing position of the glider is from the buoyancy centre, the longer it takes for the attitude of a glider to change, whether the wing is in front of, or behind, the buoyancy centre.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
4--17
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- Dalian Maritime University No.1 Ganjingzi District 0086 116026 Dalian China
autor
- Dalian Maritime University No.1 Ganjingzi District 0086 116026 Dalian China
autor
- Dalian Maritime University No.1 Ganjingzi District 0086 116026 Dalian China
autor
- Dalian Maritime University No.1 Ganjingzi District 0086 116026 Dalian China
Bibliografia
- 1. H. Stommel, “The Slocum Mission”, Oceanography. 1989. Vol. 2(1), 22-25, doi: 10.5670/oceanog.1989.26.
- 2. D.C. Webb, P.J. Simonetti, and C.P. Jones, “SLOCUM: An underwater glider propelled by environmental energy”, IEEE Journal of Oceanic Engineering. 2001. Vol. 26(4), 447-452, doi: 10.1109/48.972077.
- 3. J. Sherman, R.E. Davis, W.B. Owens, et al., “The autonomous underwater glider “spray””, IEEE Journal of Oceanic Engineering. 2001. Vol. 26(4), 437-446, doi: 10.1109/48.972076.
- 4. C.C. Eriksen, T.J. Osse, R.D. Light, et al., “Seaglider: A longrange autonomous underwater vehicle for oceanographic research”, IEEE Journal of Oceanic Engineering. 2001. Vol. 26(4), 424-436, doi: 10.1109/48.972073.
- 5. S. Wang, X. Sun, Y. Wang, et al., “Dynamic Modeling and Motion Simulation for A Winged Hybrid-Driven Underwater Glider”, China Ocean Engineering. 2011. Vol. 25(1), 97-112, doi: 10.1007/s13344-011-0008-7.
- 6. J. Yu, A. Zhang, W. Jin, et al., “Development and experiments of the Sea-Wing underwater glider”, China Ocean Engineering. 2011. Vol. 25(4), 721-736, doi: 10.1007/s13344-011-0058-x.
- 7. D.L. Rudnick, R.E. Davis, C.C. Eriksen, et al., “Underwater Gliders for Ocean Research”, Marine Technology Society Journal. 2004. Vol. 38(2), 73-84, doi: 10.4031/002533204787522703.
- 8. R.V.S. Shankar and R. Vijayakumar, “Numerical Study of the Effect of Wing Position on Autonomous Underwater Glider”, Defence Science Journal. 2020. Vol. 70(2), 214-220, doi: 10.14429/dsj.70.14742.
- 9. M.Y. Javaid, M. Ovinis, F.B.M. Hashim, et al., “Effect of wing form on the hydrodynamic characteristics and dynamic stability of an underwater glider”, International Journal of Naval Architecture and Ocean Engineering. 2017. Vol. 9(4), 382-389, doi: 10.1016/j.ijnaoe.2016.09.010.
- 10. M.Y. Javaid, M. Ovinis, N. Thirumalaiswamy, et al., “Dynamic Motion Analysis of a Newly Developed Autonomous Underwater Glider with Rectangular and Tapered Wing”, Indian Journal of Geo-Marine Sciences. 2015. Vol. 44(12), 1928-1936.
- 11. F. Zhang, J. Thon, C. Thon, et al., “Miniature Underwater Glider: Design and Experimental Results”, IEEE-Asme Transactions on Mechatronics. 2014. Vol. 19(1), 394-399, doi: 10.1109/tmech.2013.2279033.
- 12. F. Liu, Y. Wang, W. Niu, et al., “Hydrodynamic Performance Analysis and Experiments of A Hybrid Underwater Glider with Different Layout of Wings”. OCEANS 2014 - TAIPEI, 2014, doi: 10.1109/OCEANS-TAIPEI.2014.6964512.
- 13. S. Fan and C. Woolsey, “Elements of Underwater Glider Performance and Stability”, Marine Technology Society Journal. 2013. Vol. 47(3), 81-98, doi: 10.4031/mtsj.47.3.4.
- 14. J.G. Graver and N.E. Leonard, “Underwater glider dynamics and control”. 12th international symposium on unmanned untethered submersible technology, 2001.
- 15. P. Bhatta and N.E. Leonard, “Stabilization and coordination of underwater gliders”. Proceedings of the 41st IEEE Conference on Decision and Control, 2002, 2002, doi: 10.1109/CDC.2002.1184836.
- 16. N.E. Leonard and J.G. Graver, “Model-based feedback control of autonomous underwater gliders”, IEEE Journal of Oceanic Engineering. 2001. Vol. 26(4), 633-645, doi: 10.1109/48.972106.
- 17. P. Bhatta and N.E. Leonard, “Nonlinear gliding stability and control for vehicles with hydrodynamic forcing”, Automatica. 2008. Vol. 44(5), 1240-1250, doi: 10.1016/j. automatica.2007.10.006.
- 18. K. Isa and M. Rizal Arshad, “Motion simulation for propeller-driven USM underwater glider with controllable wings and rudder”. 2011 2nd International Conference on Instrumentation Control and Automation, 2011.
- 19. K. Isa and M.R. Arshad, “Dynamic modeling and characteristics estimation for USM underwater glider”. 2011 IEEE Control and System Graduate Research Colloquium, 2011, doi: 10.1109/ICSGRC.2011.5991821.
- 20. M.M. Noh, M.R. Arshad, and R.M. Mokhtar, “Modeling of USM underwater glider (USMUG)”. International Conference on Electrical, Control and Computer Engineering 2011 (InECCE), 2011.
- 21. S. Fan and C.A. Woolsey, “Dynamics of underwater gliders in currents”, Ocean Engineering. 2014. Vol. 84(JUL.1), 249–258, doi: 10.1016/j.oceaneng.2014.03.024.
- 22. S. Zhang, J. Yu, A. Zhang, et al., “Spiraling motion of underwater gliders: Modeling, analysis, and experimental results”, Ocean Engineering. 2013. Vol. 60, 1-13, doi: 10.1016/j.oceaneng.2012.12.023.
- 23. H. Zhou, T. Wang, L. Sun, et al., “Disc-type Underwater Glider Modeling and Analysis for Omnidirectional and Steering Motion Characteristics”, International Journal of Control Automation and Systems. 2020. Vol. 19(1), 532-547, doi: 10.1007/s12555-019-0432-7.
- 24. J.G. Graver, “Underwater gliders: dynamics, control and design”. Princeton University, 2005.
- 25. P. Yu, Y. Zhao, T. Wang, et al., “Steady-state Spiral Motion Simulation and Turning Speed Analysis of an Underwater Glider”. 2017 4th International Conference on Information, Cybernetics and Computational Social Systems (ICCSS), 2017, doi: 10.1109/ICCSS.2017.8091442.
- 26. C.W. Chen and N.M. Yan, “Prediction of Added Mass for an Autonomous Underwater Vehicle Moving Near Sea Bottom Using Panel Method”. 2017 4th International Conference on Information Science and Control Engineering (ICISCE), 2017.
- 27. G.A. Zarruk, P.A. Brandner, B.W. Pearce, et al., “Experimental study of the steady fluid-structure interaction of flexible hydrofoils”, Journal of Fluids and Structures. 2014. Vol. 51, 326-343, doi: 10.1016/j.jfluidstructs.2014.09.009.
- 28. Y. Singh, S.K. Bhattacharyya, and V.G. Idichandy, “CFD approach to modelling, hydrodynamic analysis and motion characteristics of a laboratory underwater glider with experimental results”, Journal of Ocean Engineering and Science. 2017. Vol. 2(2), 90-119, doi: 10.1016/j. joes.2017.03.003.
- 29. S. Fan, A. Wolek, and C.A. Woolsey, “Stability and performance of underwater gliders”. 2012 Oceans, 2012, doi: 10.1109/OCEANS.2012.6404993.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ddca13dd-e764-4974-a880-1597c2922b5c