Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The multifunctional enhancement of carbon fibre-reinforced polymers (CFRPs) is critical for their expanding applica tions in aerospace, automotive, and electronics industries. This study examines the combined effect of thermoplastic veils doped with multi-walled carbon nanotubes (MWCNTs) and a polymer matrix modified with single-walled carbon nanotubes (SWCNTs) on the mechanical, thermal, and electrical properties of CFRPs. Liquid thermoplastic acrylic resin Elium®, modi fied with 0.02 wt.% SWCNTs served as the matrix, while thermoplastic veils based on polyphenylene sulphide (PPS) and polybutylene terephthalate (PBT) doped with 1.0 wt.% MWCNTs were interleaved into the composite structure. Characteri sation revealed that the SWCNTs formed conductive networks in the polymer matrix, enhancing electrical conductivity in plane (X and Y directions) but not improving it through the thickness (Z direction) due to resin-rich regions introduced by the veils. The impact resistance improved across all the composites, particularly for the PPS-based veils, attributed to effective fi bre bridging mechanisms. The glass transition temperature (Tg) also increased due to strong adhesion at the veil-matrix inter face and molecular interactions between the nanofillers and the polymer matrix. The results highlight the potential of combin ing nanofiller-modified matrices with thermoplastic veils to achieve tailored multifunctional CFRPs. However, optimising the interlayer resin content remains crucial for further enhancing through-thickness conductivity. These findings contribute to advancing CFRPs for high-performance, multifunctional applications in diverse industries.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
253--259
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
- Warsaw University of Technology, Faculty of Materials Science and Engineering, ul. Wołoska 141, 02-507 Warsaw, Poland
autor
- Adam Mickiewicz University in Poznan, Centre for Advanced Technologies, ul. Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland
- Warsaw University of Technology, Faculty of Materials Science and Engineering, ul. Wołoska 141, 02-507 Warsaw, Poland
autor
- TMBK Partners Sp. z o.o., ul. Bitwy Warszawskiej 1920 r. 7A, 02-366 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Materials Science and Engineering, ul. Wołoska 141, 02-507 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Materials Science and Engineering, ul. Wołoska 141, 02-507 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Materials Science and Engineering, ul. Wołoska 141, 02-507 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Materials Science and Engineering, ul. Wołoska 141, 02-507 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Materials Science and Engineering, ul. Wołoska 141, 02-507 Warsaw, Poland
autor
- Technische Universität Dresden, Institute of Lightweight Engineering and Polymer Technology (ILK), Holbeinstr. 3, 01307 Dresden, Germany
autor
- Technische Universität Dresden, Institute of Lightweight Engineering and Polymer Technology (ILK), Holbeinstr. 3, 01307 Dresden, Germany
Bibliografia
- [1] Zhang J., Chevali V.S., Wang H., Wang C.-H., Current status of carbon fibre and carbon fibre composites recycling, Composites Part B: Engineering 2020, 193, 108053, DOI: 10.1016/j.compositesb.2020.108053.
- [2] Zhang J., Lin G., Vaidya U., Wang H., Past, present and future prospective of global carbon fibre composite developments and applications, Composites Part B: Engineering 2023, 250, 110463, DOI: 10.1016/j.compositesb.2022.110463.
- [3] Sarkar L., Saha S., Samanta R., Sinha A., Mandal G., Biswas A. et al., Recent Progress in CNT-reinforced com posite and FGM for multi-functional space applications and future directions, J. Inst. Eng. India Ser D 2024, 105, 527 541, DOI: 10.1007/s40033-023-00465-y.
- [4] Forintos N., Czigany T., Multifunctional application of carbon fiber reinforced polymer composites: Electrical properties of the reinforcing carbon fibers - A short review, Composites Part B: Engineering 2019, 162, 331-343, DOI: 10.1016/j.compositesb.2018.10.098.
- [5] Li R., Yang X., Li J., Shen Y., Zhang L., Lu R. et al., Review on polymer composites with high thermal conduc tivity and low dielectric properties for electronic packaging, Materials Today Physics 2022, 22, 100594, DOI: 10.1016/ j.mtphys.2021.100594.
- [6] Zhao Q., Zhang K., Zhu S., Xu H., Cao D., Zhao L. et al., Review on the electrical resistance/conductivity of carbon fiber reinforced polymer, Applied Sciences 2019, 9, 2390, DOI: 10.3390/app9112390.
- [7] Brown S.C., Robert C., Koutsos V., Ray D., Methods of modifying through-thickness electrical conductivity of CFRP for use in structural health monitoring, and its effect on mechanical properties - A review, Composites Part A: Applied Science and Manufacturing 2020, 133, 105885, DOI: 10.1016/j.compositesa.2020.105885.
- [8] Burger N., Laachachi A., Ferriol M., Lutz M., Toniazzo V., Ruch D., Review of thermal conductivity in composites: Mechanisms, parameters and theory, Progress in Polymer Sci ence 2016, 61, 1-28, DOI: 10.1016/j.progpolymsci. 2016.05.001.
- [9] Vartak D.A., Ghoterak Y., Bhatt P.M., Makwana B., Shah H., Vadher J.A. et al., Carbon nanotube composites to en hance thermal and electrical properties for space applica tions - A review, J. Environ. Nanotechnol. 2022, 11, 11-21, DOI: 10.13074/jent.2022.09.223456.
- [10] Wang S., Optimum degree of functionalization for carbon nanotubes. Current Applied Physics 2009, 9, 1146-1150, DOI: 10.1016/j.cap.2009.01.004.
- [11] Mittal G., Dhand V., Rhee K.Y., Park S.-J., Lee W.R., A review on carbon nanotubes and graphene as fillers in re inforced polymer nanocomposites, Journal of Industrial and Engineering Chemistry 2015, 21, 11-25, DOI: 10.1016/ j.jiec.2014.03.022.
- [12] Guo M., Yi X., Effect of paper or silver nanowires-loaded paper interleaves on the electrical conductivity and inter laminar fracture toughness of composites, Aerospace 2018, 5, 77, DOI: 10.3390/aerospace5030077.
- [13] Li W., Li Y., Xiang D., Zhao C., Wang B., Li H. et al., Simultaneous enhancement of electrical conductivity and in terlaminar shear strength of CF/EP composites through MWCNTs doped thermoplastic polyurethane film interleaves, Journal of Applied Polymer Science 2019, 136, 47988, DOI: 10.1002/app.47988.
- [14] Kumar V., Sharma S., Pathak A., Singh BP., Dhakate S.R., Yokozeki T. et al., Interleaved MWCNT buckypaper be tween CFRP laminates to improve through-thickness elec trical conductivity and reducing lightning strike damage. Composite Structures 2019, 210, 581-589, DOI: 10.1016/ j.compstruct.2018.11.088.
- [15] Dydek K., Boczkowska A., Latko-Durałek P., Wilk M., Padykuła K., Kozera R., Effect of the areal weight of CNT doped veils on CFRP electrical properties, Journal of Composite Materials 2020, 54, 2677-2685, DOI: 10.1177/ 0021998320902227.
- [16] Quan D., Bologna F., Scarselli G., Ivankovic A., Murphy N., Interlaminar fracture toughness of aerospace-grade carbon fibre reinforced plastics interleaved with thermoplastic veils, Com posites Part A: Applied Science and Manufacturing 2020, 128, 105642, DOI: 10.1016/j.compositesa.2019.105642.
- [17] Mongioì F., Selleri G., Maria Brugo T., Maccaferri E., Fabi ani D., Zucchelli A., Multifunctional composite material based on piezoelectric nanofibers and Cu-CFRP electrodes for sensing applications, Composite Structures 2024, 337, 118076, DOI: 10.1016/j.compstruct.2024.118076.
- [18] Mousavi S.R., Estaji S., Kiaei H., Mansourian-Tabaei M., Nouranian S., Jafari S.H. et al., A review of electrical and thermal conductivities of epoxy resin systems reinforced with carbon nanotubes and graphene-based nanoparticles, Polymer Testing 2022, 112, 107645, DOI: 10.1016/j.polymertesting. 2022.107645.
- [19] Pegoretti A., Towards sustainable structural composites: A review on the recycling of continuous-fiber-reinforced thermoplastics, Advanced Industrial and Engineering Polymer Research 2021, 4, 105-115, DOI: 10.1016/j.aiepr.2021.03.001.
- [20] Bhudolia S.K., Gohel G., Kantipudi J., Leong K.F., Gerard P., Manufacturing and investigating the load, energy and failure attributes of thin ply carbon/Elium® thermoplastic hollow composites under low-velocity impact, Materials & De sign 2021, 206, 109814, DOI: 10.1016/j.matdes.2021.109814.
- [21] Gohel G., Bhudolia S.K., Elisetty S.B.S., Leong K.F., Gerard P., Development and impact characterization of acrylic thermoplastic composite bicycle helmet shell with improved safety and performance, Composites Part B: Engineering 2021, 221, 109008, DOI: 10.1016/j.compositesb.2021.109008.
- [22] Shah S.Z.H., Megat-Yusoff P.S.M., Karuppanan S., Choudhry R.S., Din I.U., Othman A.R. et al., Compression and buckling after impact response of resin-infused thermo plastic and thermoset 3D woven composites, Composites Part B: Engineering 2021, 207, 108592, DOI: 10.1016/ j.compositesb.2020.108592.
- [23] Zoller A., Escalé P., Gérard P., Pultrusion of bendable con tinuous fibers reinforced composites with reactive acrylic thermoplastic ELIUM® resin, Frontiers in Materials 2019, 6, DOI: 10.3389/fmats.2019.00290.
- [24] Cousins D.S., Suzuki Y., Murray R.E., Samaniuk J.R., Stebner A.P., Recycling glass fiber thermoplastic compos ites from wind turbine blades, Journal of Cleaner Production 2019, 209, 1252-1263, DOI: 10.1016/j.jclepro.2018.10.286.
- [25] Bhudolia S.K., Gohel G., Leong K.F., Joshi S.C., Damping, impact and flexural performance of novel carbon/Elium® thermoplastic tubular composites, Composites Part B, Engi neering 2020, 203, 108480, DOI: 10.1016/j.compositesb. 2020.108480.
- [26] Bhudolia S.K., Joshi S.C., Bert A., Yi Di B., Makam R., Gohel G., Flexural characteristics of novel carbon methyl methacrylate composites, Composites Communications 2019, 13, 129-133, DOI: 10.1016/j.coco.2019.04.007.
- [27] Obande W., Mamalis D., Dipa R., Liu Y., Ó. Brádaigh C.M., Mechanical and thermomechanical characterisation of vacuum-infused thermoplastic- and thermoset-based com posites, Materials & Design 2019, 175, 107828, DOI: 10.1016/j.matdes.2019.107828.
- [28] Obande W., Ray D., Ó. Brádaigh C.M., Viscoelastic and drop-weight impact properties of an acrylic-matrix compos ite and a conventional thermoset composite - A comparative study, Materials Letters 2019, 238, 38-41, DOI: 10.1016/ j.matlet.2018.11.137.
- [29] Bhudolia S.K., Perrotey P., Joshi S.C., Enhanced vibration damping and dynamic mechanical characteristics of com posites with novel pseudo-thermoset matrix system, Com posite Structures 2017, 179, 502-513, DOI: 10.1016/ j.compstruct.2017.07.093.
- [30] Obande W., Ó. Brádaigh C.M., Ray D., Continuous fibre reinforced thermoplastic acrylic-matrix composites prepared by liquid resin infusion - A review, Composites Part B: Engineer ing 2021, 215, 108771, DOI: 10.1016/j.compositesb. 2021.108771
- [31] Muthuraj R., Grohens Y., Seantier B., Mechanical and ther mal insulation properties of elium acrylic resin/cellulose nano fiber based composite aerogels, Nano-Structures & Nano Objects 2017, 12, 68, 76, DOI: 10.1016/j.nanoso.2017.09.002.
- [32] Fredi G., Dorigato A., Pegoretti A., Novel reactive thermo plastic resin as a matrix for laminates containing phase change microcapsules, Polymer Composites 2019, 40, 3711 3724, DOI: 10.1002/pc.25233.
- [33] Demski S., Dydek K., Bartnicka K., Majchrowicz K., Kozera R., Boczkowska A., Introduction of SWCNTs as a method of improvement of electrical and mechanical properties of CFRPs based on thermoplastic acrylic resin, Polymers 2023, 15, 506, DOI: 10.3390/polym15030506.
- [34] Geng Y., Liu M.Y., Li J., Shi X.M., Kim J.K., Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites, Composites Part A: Applied Science and Manufacturing 2008, 39, 1876-1883, DOI: 10.1016/j.compositesa.2008.09.009.
- [35] Quan D., Yue D., Ma Y., Zhao G., Alderliesten R., On the mix-mode fracture of carbon fibre/epoxy composites inter leaved with various thermoplastic veils, Composites Com munications 2022, 33, 101230, DOI: 10.1016/j.coco.2022. 101230.
- [36] Demircan Ö., Sufyan S., Basem A.M., Tensile and charpy impact properties of CNTs integrated PET/Glass Fiber thermoplastic composites with commingled yarn, Res. Eng. Struct. Mater. 2023, 9(1), 53-65, DOI: 10.17515/resm2022. 442ma0606.
- [37] Her S.-C., Lin K.-Y., Dynamic mechanical analysis of carbon nanotube-reinforced nanocomposites, Journal of Applied Biomaterials & Functional Materials 2017, 15, 13-18, DOI: 10.5301/jabfm.5000351.
- [38] Thostenson E., Chou T.-W., On the elastic properties of carbon nanotube-based composites: Modelling and charac terization, Journal of Physics D: Applied Physics 2003, 36, 573, DOI: 10.1088/0022-3727/36/5/323.
- [39] Wang Y., Wang X., Cao X., Gong S., Xie Z., Li T. et al., Effect of nano-scale Cu particles on the electrical property of CNT/polymer nanocomposites, Composites Part A: Ap plied Science and Manufacturing 2021, 143, 106325, DOI: 10.1016/j.compositesa.2021.106325.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ddc99880-b197-4965-a55a-fe13d31ea551
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.