PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Extracellular activity of proteases from Yarrowia lipolytica IPS21 as a function of the carbon and nitrogen source

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The yeast strain Yarrowia lipolytica IPS 21 was tested for its ability to produce the protease enzyme on analytically pure carbon sources as well as on waste carbon sources. It was confirmed that the yeast Y. lipolytica IPS21 can have a higher proteolytic activity in the presence of waste carbon sources in chrome-tanned leather shavings (CTLS) than on yeast extract alone. This is confirmed by the high concentration of amino acids in samples with CTLS, suggesting increased degradation of CTLS by Y. lipolytica or secretion of proteases into the medium. It was also confirmed that metals accumulate mainly in the biomass and not in the supernatant. The biomass was also found to contain high levels of Ca, K and P, which are essential for plant growth. These results show that Y. lipolytica strain IPS21 can be used for the production of extracellular alkaline proteases and for the degradation of protein waste.
Rocznik
Strony
66--74
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
  • Lukasiewicz Research Network - Lodz Institute of Technology, Zgierska 73, and 91-462 Lodz
  • Lukasiewicz Research Network - Lodz Institute of Technology, Zgierska 73, and 91-462 Lodz
  • Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland
  • Lukasiewicz Research Network - Lodz Institute of Technology, Zgierska 73, and 91-462 Lodz
  • Lukasiewicz Research Network - Lodz Institute of Technology, Zgierska 73, and 91-462 Lodz
  • Lukasiewicz Research Network - Lodz Institute of Technology, Zgierska 73, and 91-462 Lodz
  • Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland
  • Lukasiewicz Research Network - Lodz Institute of Technology, Zgierska 73, and 91-462 Lodz
  • Lukasiewicz Research Network - Lodz Institute of Technology, Zgierska 73, and 91-462 Lodz
Bibliografia
  • 1. Gonçalves F.A.G., Colen G., Takahashi J. A. Yarrowia lipolytica and Its Multiple Applications in the Biotechnological Industry. The Scientific World Journal. 2014; 476207. DOI: 10.1155/2014/476207
  • 2. Pokora M., Niedbalska J., Szołtysik M. Effect of Yarrowia lipolytica Enzymes on Selected Qualitative Features of Ripening, Low-Fat Cheeses. Żywność. Nauka. Technologia. Jakość. 2010;5:146-158. (In Polish)
  • 3. Madzak C., Gaillardin C., Beckerich J.M. Heterologous protein expression and secretion in the non-conventional yeast Yarrowia lipolytica: a review. Journal of Biotechnology. 2004;109:63-81. DOI: 10.1016/j.jbiotec.2003.10.027
  • 4. Wieczorek D,. Słubik A., Masłowska-Lipowicz I., Gendaszewska D., Ławińska K. Collagen and Keratin as a Components of Hydrogels. Fibres and Textiles in Eastern Europen, 2022;151:61-69. DOI: 10.2478/ftee-2022-0024
  • 5. Gendaszewska D., Wieczorek D. Tannery waste as secondary raw materials. Janiszewska M (red). Environmental protection - new solutions and prospects for the future. Wydawnictwo Naukowe TYGIEL. 2022; 18-37. (In Polish)
  • 6. Moujehed E., Zarai Z., Khemir H., Miled N., Bchir M.S. Cleaner degreasing of sheepskins by the Yarrowia lipolytica LIP2 lipase as a chemical-free alternative in leather industry. Colloids and Surfaces B: Biointerfaces, 2022;211:112292. DOI:10.1016/j.colsurfb.2021.112292ff
  • 7. Speight R.E., Navone L., Gebbie L.K., Blinco J., Bryden W.L. Platforms to accelerate biomanufacturing of enzyme and probiotic animal feed supplements: discovery considerations and manufacturing implications. Animal Production Science. 2022;62:1113-1128. DOI:10.1071/AN21342
  • 8. Madhu A., Chakraborty J.N. Developments in application of enzymes for textile processing. Journal of Cleaner Production. 2017;145:114-133. DOI: 10.1016/j.jclepro.2017.01.013
  • 9. Jach M.E., Malm A. Yarrowia lipolytica as an Alternative and Valuable Source of Nutritional and Bioactive Compounds for Humans. Molecules. 2022;27:2300. DOI: 10.3390/molecules27072300
  • 10. Ibrahim N.A., Amin H.A., Abdel-Aziz M.S., Basma M.E. A green approach for modification and functionalization of wool fabric using bio- and nano-technologies. Clean Technologies Environmental Policy. 2022;24:3287–3302. DOI: 10.1007/s10098-022-02385-z
  • 11. Czajgucka A., Chrzanowska J., Juszczyk P., Szołtysik M., Połomska X., Wojtatowicz M. Yeast growth in model cheese and their effect on protein and fat degradation. Acta Scientiarum Polonorum Biotechnologia. 2006; 5: 95- 103.
  • 12. Cui W., Wang Q., Zhang F., Zhang S.C., Chi Z.M., Madzak C. Direct conversion of inulin into single cell protein by the engineered Yarrowia lipolytica carrying inulinase gene. Process Biochemistry. 2011;46: 1442-1448. DOI: 10.1016/j.procbio.2011.03.017
  • 13. Bessadok B., Masari M., Brück T., Sadok S. Characterization of the Crude Alkaline Extracellular Protease of Yarrowia lipolytica YlTun15. Journal of FisheriesSciences.com. 2017;11:019- 024.
  • 14. Ogrydziak D.M. Yeast Extracellular Proteases. Critical Review in Biotechnology. 1993;13:1-55. DOI: 10.3109/07388559309069197
  • 15. Hapeta P., Kerkhoven E.J., Lazar Z. Nitrogen as the major factor influencing gene expression in Yarrowia lipolytica. Biotechnology Reports. 2020;27:1-10. DOI: 10.1016/j.btre.2020.e00521
  • 16. Barth G., Gaillardin C. Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiology Reviews. 1997;19:219-237.
  • 17 . Timoumi A., Guillouet S.E., Molina-Jouve C., Fillaudeau L., Gorret N. Impacts of environmental conditions on product formation and morphology of Yarrowia lipolytica. Applied Microbiology and Biotechnology. 2018;102:3831-3848. DOI: 10.1007/s00253-018-8870-3
  • 18. Walker J.M. The Lowry Method for Protein Quantitation. The Protein Protocols Handbook. 2009. Humana Press Inc, New Jersey.
  • 19. Aissaoui N., Marzouki M.N., Abidi F. Purification and biochemical characterization of a novel intestinal protease from Scorpaena notata. International Journal of Food Properties. 2017;20:2151-2165. DOI: 10.1080/10942912.2017.1368550
  • 20. Miksch K. The Influence of the TTC concentration on the determination of activated sludge activity. Acta Hydrochimica et Hydrobiologica. 1985;13:67-73. DOI:10.1002/aheh.19850130109
  • 21. Engel B., Suppan J., Nürnberger S., Power A.M., Marchetti-Deschmann M. Revisiting amino acid analyses for bioadhesives including a direct comparison of tick attachment cement (Dermacentor marginatus) and barnacle cement (Lepas anatifera). International Journal of Adhesion and Adhesives. 2021;105 1-9. DOI: 10.1016/j.ijadhadh.2020.102798
  • 22. Workman M., Holt P., Thykaer J. Comparing cellular performance of Yarrowia lipolytica during growth on glucose and glycerol in submerged cultivations. AMB Express. 2013;3:58. DOI 10.1186/2191-0855-3-58
  • 23. Lubuta P., Workman M., Kerkhoven E.J., Workman C.T. Investigating the Influence of Glycerol on the Utilization of Glucose in Yarrowia lipolytica Using RNA-Seq-Based Transcriptomics. G3 (Bethesda). 2019; 9(12):4059-4071. DOI: 10.1534/g3.119.400469
  • 24. Rýglová S., Braun M., Suchý T. Collagen and Its Modifications—Crucial Aspects with Concern to Its Processing and Analysis. Macromolecular Materials and Engineering. 2017;302:1600460. DOI: 10.1002/mame.201600460
  • 25. Sari Y.W., Syafitri U., Sanders J.P.M., Bruins M.E. How biomass composition determines protein extractability. Industrial Crops and Products. 2015;70:125-133. DOI: 10.1016/j.indcrop.2015.03.020
  • 26. Li C., Lin W., Ong K.L., Mou J., Lin C.S.K., Fickers. P. Synthesis of Polyols and Organic Acids by Wild-Type and Metabolically Engineered Yarrowia lipolytica Strains. In: Darvishi Harzevili. F. (eds) Synthetic Biology of Yeasts. Springer. Cham. 2022. DOI: 10.1007/978-3-030-89680-5_9
  • 27. Papanikolaou S., Diamantopoulou P., Blanchard F., Lambrinea E., Chevalot I., Stoforos N.G., Rondags E. Physiological Characterization of a Novel Wild-Type Yarrowia lipolytica Strain Grown on Glycerol: Effects of Cultivation Conditions and Mode on Polyols and Citric Acid Production. Applied Sciences. 2020;10:1- 24. DOI:10.3390/app10207373
  • 28. Akpınar O., Uçar F., Yalçın H.T. Screening and regulation of alkaline extracellular protease and ribonuclease production of Yarrowia lipolytica strains isolated and identified from different cheeses in Turkey. Ann Microbiol. 2011; 61:907- 915. DOI: 10.1007/s13213-011-0213-x
  • 29. Ogrydziak D.M. Regulation of Production of Yarrowia lipolytica Extracellular Ribonuclease and Alkaline Extracellular Protease. In: Wolf. K.. Breunig. K.. Barth. G. (eds) Non-Conventional Yeasts in Genetics. Biochemistry and Biotechnology. Springer Lab Manuals. Springer. Berlin. Heidelberg. 2003. DOI: 10.1007/978-3-642-55758-3_64
  • 30. Lopes M., Gomes A.S., Silva C.M., Belo I. Microbial lipids and added value metabolites production by Yarrowia lipolytica from pork lard. Journal of Biotechnology. 2018;265:76-85. DOI: 10.1016/j.jbiotec.2017.11.007
  • 31. López-Flores A.R., Luna-Urban C., Buenrostro Figueroa. J.J., Hernández Martínez R., Huerta Ochoa S., Escalona-Buendía H., Aguilar-Gonzalez C., Prado-Barragan L.A. Effect of pH, temperature and protein and carbohydrates source in protease production by Yarrowia lipolytica in solid culture. Revista mexicana de ingeniería química. 2016;15:57-67.
  • 32. Coelho M.A.Z., Amaral P.F.F., Belo I. Yarrowia lipolytica: an industrial workhorse. Current research, technology and education topics in applied microbiology and microbial biotechnology. 2010;2:930-944.
  • 33. Heres A., Saldaña C., Toldrá F., Mora L. Identification of dipeptides by MALDI-ToF mass spectrometry in long-processing Spanish dry-cured ham. Food Chemistry: Molecular Sciences. 2021;3:100048. DOI: 10.1016/j. fochms.2021.100048
  • 34. da Silva R.R. Enzymatic Synthesis of Protein Hydrolysates From Animal Proteins: Exploring Microbial Peptidases. Frontiers in Microbiology. 2018; 9. DOI: 10.3389/fmicb.2018.00735
  • 35. Zephyr J., Kurt Yilmaz N., Schiffer C.A. Viral proteases: Structure, mechanism and inhibition. Enzymes. 2021;50:301-333. DOI: 10.1016/bs.enz.2021.09.004
  • 36. Juszczyk P., Rymowicz W., Kita A., Rywińska A. Biomass production by Yarrowia lipolytica yeast using waste derived from the production of ethyl esters of polyunsaturated fatty acids of flaxseed oil. Industrial Crops and Products. 2019;138. DOI: 10.1016/j.indcrop.2019.111590
  • 37. Bhateria R., Dhaka R. Biological strategies for detoxification of Hexavalent chromium. International Journal of Pharma and Bio Sciences. 2017;8:35-48. DOI:10.22376/ijpbs.2017.8.1.b35-48
  • 38. Dhar R., Sägesser R., Weikert Ch., Wagner A. Yeast Adapts to a Changing Stressful Environment by Evolving Cross-Protection and Anticipatory Gene Regulation. Molecular Biology and Evolution. 2013;30: 573-588. DOI: 10.1093/molbev/mss253
  • 39. Xing D., Magdouli S., Zhang J., Bouafif H., Koubaa A. A Comparative Study on Heavy Metal Removal from CCA-Treated Wood Waste by Yarrowia lipolytica: Effects of Metal Stress. Journal of Fungi. 2023;9: 469. DOI: 10.3390/jof9040469
  • 40. Bankar A., Zinjarde S., Shinde M., Gopalghare G., Ravikumar A. Heavy metal tolerance in marine strains of Yarrowia lipolytica. Extremophiles. 2018;22:617-628. DOI: 10.1007/s00792-018-1022-y
  • 41. Mendes M., Cassoni A.C., Alves S., Pintado M.E., Castro P.M.L., Moreira P. Screening for a more sustainable solution for decolorization of dyes and textile effluents using Candida and Yarrowia spp. Journal of Environmental Management. 2022;307:114421. DOI: 10.1016/j.jenvman.2021.114421
  • 42. Mupa M., Kubara R., Gere J.. Extraction, growth and immobilization of Yarrowia lipolytica yeast cells for dye effluent treatment. Archives of Environmental Protection. 2018;1:48-54. DOI:10.24425/118180
  • 43. Mitra G.N. Definitions of Heavy Metals. Essential and Beneficial Plant Nutrients. In: Regulation of Nutrient Uptake by Plants. Springer. New Delhi. 2015. DOI: 10.1007/978-81-322-2334-4_8
  • 44. Chambard M., Albert B., Cadiou M., Auby S., Profizi C., Boulogne I. Living yeast-based biostimulants: different genes for the same results? Frontiers in Plant Science. 2023;14:1-10. DOI: 10.3389/fpls.2023.1171564
  • 45. Prajapati C.D., Smith E., Kane F., Shen J. Selective enzymatic modification of wool/polyester blended fabrics for surface patterning. Journal of Cleaner Production. 2019;211:909-921. DOI: 10.1016/j.jclepro.2018.11.079
Uwagi
Błąd w bibliografii - złączona pozycja 11 i 12.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ddc346c1-e1ea-4720-bfca-f5d77be9b6c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.