PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling Runoff and Sedimentation Yield Using Soil and Water Assessment Tool for Wyra River Basin

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sediment deposition is a natural process that occurs in all reservoirs, resulting in significant storage loss, which has an adverse effect on the economic development of the local area. It is necessary to take appropriate action to control the sedimentation and prevent loss of the storage capacity of the reservoir. In the present study, runoff and sediment data collected at the Konijerla hydrometric station of Wyra reservoir for the period of 1991 to 2019 are used. Data from 2011 to 2016 is used to calibrate and the data from 2017 to 2019 is used to validate the SWAT model. The Wyra watershed consists of 26 sub-basins and 47 HRUs (Hydrological Response Units). Out of these sub-basins, one of the sub-basins is contributing 18.8% of sedimentation. It was also observed that two other sub-basins, though less in area, generate high sediments. Seasonal sediment analysis showed that sedimentation increased by 12% in the month of August for wet years. Overall sedimentation increased in wet years by 10.60% and in dry years, it decreased by 18.78%. The SWAT model was satisfactory in the calibration and validation periods for various parameters used. Hence, this model can be used for sedimentation study, as well as a planning tool in the reservoir capacity management.
Słowa kluczowe
Twórcy
  • National Institute of Technology, Warangal, 506004, India
  • National Institute of Technology, Warangal, 506004, India
Bibliografia
  • 1. Agarwal, A., Mishra, S.K., Ram, S., Singh, J.K. 2006. Simulation of runoff and sediment yield using artificial neural networks. Biosys. Eng., 94(4), 597–613. http://dx.doi.org/10.1016/j.biosystemseng.2006.02.014
  • 2. Arega Mulu., Dwarakish, G.S. 2015. Different Approach for Using Trap Efficiency for Estimation of Reservoir Sedimentation. An Overview, Proc. of International Conference on Water Resources, Coastal and Ocean Engineering, Elsevier, Science Direct, Aquatic Procedia., 4, 847–852. https://doi.org/10.1016/j.aqpro.2015.02.M
  • 3. Beasley, D.B., Huggins, L.F. Monke, E.J. 1980. A model for watershed planning. Transactions of ASAE, 23(4), 938–944. https://doi.org/10.13031/2013.34692
  • 4. Chitata, T., Mugabe, F.T. Kashaigili, J.J. 2014. Estimation of Small Reservoir Sedimentation in Semi-Arid Southern Zimbabwe. Journal of Water Resource and Protection, 6, 1017–1028. http://dx.doi.org/10.4236/jwarp.2014.611096
  • 5. Dawson, C.W., Wilby, R.L. 2001. Hydrological modelling using artificial neural networks. Prog. Phys. Geogr., 25(1), 80–108. http://dx.doi.org/10.1191/030913301674775671
  • 6. Garg, V. Jothiprakash, V. 2008. Trap efficiency estimation of a large Reservoir. ISH Journal of Hydraulic Engineering, 14, 88–101. https://doi.org/10.1080/09715010.2008.10514907
  • 7. Giustolisi, O., Laucelli, D. 2005. Improving generalization of artificial neural networks in rainfall-runoff modeling. https://doi.org/10.1623/hysj.50.3.439.65025
  • 8. Issa, I.E., Al-Ansari, N., Knutsson, S. Sherwany, G. 2015. Monitoring and Evaluating the Sedimentation Process in Mosul Reservoir Reservoir Using Trap Efficiency Approaches. Journal of Scientific Research Publishing: Engineering, 7, 190–202. http://dx.doi.org/10.4236/eng.2015.74015
  • 9. Jain, A., Srinivasulu, S. 2006. Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques. J. Hydrol., 317(3–4), 291–306. http://dx.doi.org/10.1016/j.jhydrol.2005.05.022.
  • 10. Jain, M.K. Kothyari, U.C. 2000. Estimation of Soil Erosion and Sediment Yield using GIS. Hydrological Sciences Journal, 45, 771–786. https://doi.org/10.1080/02626660009492376.
  • 11. Jain, S.K. 2001. Development of integrated sediment rating curves using ANNs. J. Hydraul. Eng., 127(1), 30–37, https://doi:10.1061/(ASCE)0733-9429(2001)127:1(30),30-37
  • 12. Jiang, L., Yao, Z., Liu, Z. 2015. Estimation of soil erosion in some sections of lower Jinsha River based on RUSLE. Nat. Hazards, 76(3), 1831–1847. https://doi:10.1007/s11069-014-1569-6
  • 13. Kothyari, U.C., Jain, M.K. Ranga Raju, K.G. 2002. Estimation of Temporal Variation of Sediment Yield using GIS. Hydrological Sciences Journal, 47, 693–706. https://doi.org/10.1080/02626660209492974
  • 14. Krishna Rao, B., Mishra, P.K., Kurothe, R.S., Pande, V.C. Kumar, Gopal 2015. Effectiveness of Dichanthiumannulatum in Watercourses for Reducing Sediment Delivery from Agricultural Watersheds. Clean – Soil, Air, Water, 43(5), 710–716. https://doi.org/10.1002/clen.201400265
  • 15. Lewis, S.E., Bainbridge, Z.T., Kuhnert, P.M., Sherman, B.S., Henderson, B.,. Dougall, C, Cooper, M., Brodie, J.E. 2013. Calculating sediment trapping efficiencies for reservoirs in tropical settings: A case study from the Burdekin Falls Reservoir. NE Australia: Water Resour. Res., 49, http://dx.doi.org/10.1002/wrcr.20117
  • 16. Miao, C., Ni, J., Borthwick, A.G.L., Yang, L. 2011. A preliminary estimate of human and natural contributions to the changes in water discharge and sediment load in the yellow river. Global Planet. Change, 76(3), 196–205. https://doi:10.1016/j.gloplacha.2011.01.008
  • 17. Siyam, A.M., Mirghani, M., El Zein, S., Golla, S., Elsayed, S.M. 2005. Assessment of the Current State of the Nile basin Reservoir Sedimentation problems. NBCN-RE (Nile Basin Capacity Building Network for River Engineering), River Morphology, Research Cluster, Group–I Report. https://www.nbcbn.net/ctrl/images/img/uploads/4427_31104551.pdf
  • 18. Tan, G., Chen, P., Deng, J., Xu, Q., Tang, R., Feng, Z. Yi, R. 2019. Review and improvement of conventional models for reservoir sediment trapping efficiency. Elsevier Ltd. Journal, 2405–8440. https://doi.org/10.1016/j.heliyon.2019.e02458.
  • 19. Van Griensven, A., Meixner, T. 2006. Methods to quantify and identify the sources of uncertainty for river basin water quality models. Water Scie. Technol., 53(1), 51–59. https://doi.org/10.2166/wst.2006.007
  • 20. Van Liew, M.W., Arnold, J.G., Bosch, D.D. 2005. Problems and potential of autocalibrating a hydrologic model. Trans. ASAE, 48(3). https://doi.org/1025–1040.10.13031/2013.18514
  • 21. Verstraeten, G., Poesen, J. 2000. Estimating trap efficiency of small reservoirs and ponds. methods and implications for the assessment of sediment yield, Progress in Physical Geography, 24–2, 219–251. https://doi.org/10.1177/030913330002400204
  • 22. Yang, J., Reichert, P., Abbaspour, K.C., Xia, J., Yang, H. 2008. Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. J. Hydrol., 358. https://doi.org/1–23.10.1016/j.jhydrol.2008.05.012.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ddc3150d-b62a-4493-a332-8a896ddc4c93
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.