PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Methodology of Comparative Validation of Selected Foundry Simulation Codes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The validation of each simulation code used in foundry domain requires individual approach due to its specificity. This validation can by elaborated on the basis of experimental results or in particular cases by comparison the simulation results from different codes. The article concerns the influence of grey cast iron density curve and different forms of solid fraction curve Fs=f(T) on the formation of shrinkage discontinuities. Solid fraction curves applying Newtonian Thermal Analysis (NTA) were estimated. The experimental and numerical simulation tests were performed on the castings, which were made with Derivative Thermal Analysis (DerTA) standard cups. The numerical tests were realized using NovaFlow&Solid (NF&S), ProCast and Vulcan codes. In this work, the coupled influence of both curves on the dynamics of the shrinkage-expansion phenomena and on shrinkage defects prognosis in grey cast iron castings has been revealed. The final evaluation of the simulation systems usefulness should be based on validation experiment, preceded by comparing the simulation results of available systems which are proposed in given technology.
Rocznik
Strony
37--44
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
Twórcy
autor
  • Poznan University of Technology, 3 Piotrowo Street, 60-965 Poznan, Poland
  • Poznan University of Technology, 3 Piotrowo Street, 60-965 Poznan, Poland
autor
  • Poznan University of Technology, 3 Piotrowo street, 60-965 Poznan, Poland
autor
  • UPC Labson, Campus Terrassa, Colom, 11, 08222 Terrassa, Barcelona, Spain
Bibliografia
  • [1] Ignaszak, Z. (2011). Study on Data Base of Modeling Concerning Casting Phenomena in Cast-Iron-Mould Simulation Systems. Key Engineering Materials. 457, 305-311. DOI: 10.4028/www.scientific.net/KEM.457.305.
  • [2] Ignaszak, Z. & Popielarski, P. (2003). Thermal and physical properties of insulating–exothermic sleeves, determining by inverse problem method. Archives of Foundry. 3, 209-220 (in Polish).
  • [3] Ignaszak, Z. Popielarski, P. & Ciura, J. (2005). Heat source description of iso–exothermic sleeves with the use of continuous function. Archives of Foundry. 5, 157-163.
  • [4] Ignaszak, Z. & Popielarski, P. (2006). Identification of basic substitute thermo-physical coefficients of mould sand in the dependence on casing wall thickness. Archives of Foundry. 6, 224-231 (in Polish).
  • [5] Ignaszak, Z., Hajkowski, J. & Popielarski, P. (2013). Mechanical properties gradient existing in real castings taken into account during design of cast components. Defect and Diffusion Forum. 334-335, 314-321. DOI: 10.4028/www.scientific.net/DDF.334-335.314.
  • [6] Ignaszak, Z., Popielarski, P. & Hajkowski, J. (2013). Sensitivity of models applied in selected simulation systems with respect to database quality for resolving of casting problems. Defect and Diffusion Forum. 336, 135-146. DOI: 10.4028/www.scientific.net/DDF.336.135.
  • [7] Fras, E., Kapturkiewicz, W., Burbielko, A. & Lopez. H.F. (1993). A new concept in thermal Analysis of castings. AFS Trans. 101, 505-511.
  • [8] Diószegi, A. & Svensson, I.L. (2005). On the problem of thermal analysis of solidification. Material Science and Engineering A. A 413-414, 474-479 DOI: 10.1016/j. msea.2005.09.052.
  • [9] Celentano, D.J., Dardati, P.M., Godoy, L.A. & Boeri. R.E. (2008). Computational simulation of microstructure evolution during solidification of ductile cast iron. International Journal of Cast Metals Research. 21, 416-426. DOI: 10.1179/136404608X370756.
  • [10] Gandin, Ch.-A. & Rappaz. M. (1994). A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes. Acta Metallurgica Et Materialia. 42, 2233-2246. DOI: 10.1016/0956-7151(94)90302-6.
  • [11] Rappaz, M., Jacot, A. & Gandin, Ch.-A. (2004). Modeling of dendritic grain formation during solidification at the level of macro- and microstructures. Raabe D.(Eds.). Continuum Scale Simulation of Engineering Materials Fundamentals - Microstructures - Process Applications. Wiley-VCH.
  • [12] Stefanescu, D.M. (1995). Methodologies for Modeling of Solidification Microstructure and Their Capabilities. ISIJ International. 35, 637-650.
  • [13] Castro, M., Roquet, P., Castilla, R., Codina, E. (2013). Industrial requirement for melting (Flexicast report).
  • [14] Thermal Analysis Software. Proservice Technology. http://www.proservicetech.net.
  • [15] Gurgul, D., Burbelko, A., Fras, E. & Guzik, E. (2010). Cellular automata modeling of cooperative eutectic growth. Archives of Foundry Engineering. 10, 35-40.
  • [16] Rappaz, M. (2003). ESI Conference EUROPAM. Mainz. Germany.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ddc220f0-e284-4a2c-b767-b3b7a9999dca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.