PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the role of LET-dependent parameters in the determination of the absorbed dose by in-phantom recombination chambers

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper discusses the theoretical background in terms of the use of in-phantom recombination chambers in mixed radiation fi elds, with special attention paid to the question of how the experimentally determined, linear-energy-transfer-dependent (LET) parameters can be applied with regard to the more accurate determination of the chamber response and absorbed dose in mixed radiation fi elds. Methods of taking the recombination index of radiation quality (RIQ) measurements and theoretical consideration concerning the determination of the absorbed dose are described. Classical Bragg-Gray and Spencer-Attix cavity theories were analysed and their relationship to in-phantom recombination chambers was specifi ed. Methods concerning the estimation of correction factors with regard to RIQ measurements and their importance are highlighted.
Czasopismo
Rocznik
Strony
9--15
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
autor
  • Institute of Metrology and Biomedical Engineering Warsaw University of Technology Sw. A. Boboli 8, 02-525 Warsaw, Poland
autor
  • Institute of Metrology and Biomedical Engineering Warsaw University of Technology Sw. A. Boboli 8, 02-525 Warsaw, Poland
Bibliografia
  • 1. Zielczyński, M. (1962). Use of columnar recombination for determination of relative biological efficiency of radiation. Nukleonika, 7, 175–182 (in Russian).
  • 2. Zielczyński, M. (1963). Recombination method for determination of linear energy transfer of mixed radiation. In Symposium on Neutron Detection, Dosimetry, and Standardization, 10–14 December 1962
  • 3. Sullivan, A. H., & Baarli, J. (1963). An ionization chamber for the estimation of the biological effectiveness of radiation. Geneva, Switzerland: CERN. (Report 63-17).
  • 4. Zielczyński, M., Golnik, N., Makarewicz, M., & Sullivan, A. H. (1981). Definition of radiation quality by initial recombination of ions. In 7th Symposium on Microdosimetry, 8–12 September 1980 (pp. 853–862). Oxford, United Kingdom: Harwood Academic Publishers.
  • 5. Zielczyński, M., & Golnik, N. (1994). Recombination index of radiation quality – measuring and applications. Radiat. Prot. Dosim., 52, 419–422.
  • 6. Golnik, N. (1995). Microdosimetry using a recombination chamber: Method and applications. Radiat. Prot. Dosim., 61(1/3), 125–128.
  • 7. Golnik, N. (1996). Recombination methods in the dosimetry of mixed radiation. Swierk, Poland: Institute of Atomic Energy. (Report IAE-20/A).
  • 8. Zielczyński, M., & Golnik, N. (1994). Energy expended to create an ion pair as a factor dependent on radiation quality. In International Symposium on Measurement Assurance in Dosimetry, 24–27 May 1993 (pp. 383–391). Vienna, Austria: International Atomic Energy Agency.
  • 9. Silari, M., Agosteo, S., Beck, P., Bedogni, R., Cale, E., Caresana, M., Domingo, C., Donadille, L., Dubourg, N., Esposito, A., Fehrenbacher, G., Fernandez, F., Ferrarini, M., Fiechter, A., Fuchs, A., Garcia, M. J., Golnik, N., Gutermuth, F., Khurana, S., Klages, Th., Latocha, M., Mares, V., Mayer, S., Radon, T., Reithmeier, H., Rollet, S., Roos, H., Ruhm, W., Sandri, S., Schardt, D., Simmer, G., Spurny, F., Trompier, F., Villa-Grasa, E., Weitzenegger, E., Wiegel, B., Wielunski, M., Wissmann, F., Zechner, A., & Zielczynski, M. (2009). Intercomparison of radiation protection devices in a high-energy stray neutron field. Part III: Instrument response. Radiat. Meas., 44(7/8), 673–691. DOI: 10.1016/j.radmeas.2009.05.005.
  • 10. Caresana, M., Denker, A., Esposito, A., Ferrarini, M., Golnik, N., Hohmann, E., Leuschner, A., Luszik-Bhadra, M., Manessi, G., Mayer, S., Ott, K., Roehrich, J., Silari, M., Trompier, F., Volnhals, M., & Wielunski, M. (2014). Intercomparison of radiation protection instrumentation in a pulsed neutron field. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 737, 203–213. DOI: 10.1016/j.nima.2013.11.073.
  • 11. Miljanic, S., Bordy, J. -M., d’Errico, F., Harrison, R., & Olko, P. (2014). Out-of-field dose measurements in radiotherapy – An overview of activity of EURADOS Working Group 9: Radiation protection in medicine. Radiat. Meas., 71, 270–275. DOI: 10.1016/j.radmeas.2014.04.026.
  • 12. Kaderka, R., Schardt, D., Durante, M., Berger, T., Ramm, U., Licher, J., & La Tessa, C. (2012). Outof-field dose measurements in a water phantom using different radiotherapy modalities. Phys. Med. Biol., 57(16), 5059–5074. DOI: 10.1088/0031-9155/57/16/5059.
  • 13. Hälg, R. A., Besserer, J., Boschung, M., Mayer, S., Lomax, A. J., & Schneider, U. (2014). Measurements of the neutron dose equivalent for various radiation qualities, treatment machines and delivery techniques in radiation therapy. Phys. Med. Biol., 59(10), 2457–2468.DOI: 10.1088/0031-9155/59/10/2457.
  • 14. Sanchez-Doblado, F., Domingo, C., Gomez, F., Sánchez-Nieto, B., Muñiz, J. L., García-Fusté, M. J., Expósito, M. R., Barquero, R., Hartmann, G., Terrón, J. A., Pena, J., Méndez, R., Gutiérrez, F., Guerre, F. X., Roselló, J., Núñez, N., Brualla-González, L., Manchado, F., Lorente, A., Gallego, E., Capote, R., Planes, D., Lagares, J. I., González-Soto, X., Sansaloni, F., Colmenares, R., Amgarou, K., Morales, E., Bedogni, R., Cano, J. P., & Fernández, F. (2012). Estimation of neutron-equivalent dose in organs of patients undergoing radiotherapy by the use of a novel online digital detector. Phys. Med. Biol., 57(19), 6167–6191. DOI:10.1088/0031-9155/57/19/6167.
  • 15. Irazola, L., Lorenzoli, M., Bedogni, R., Pola, A., Terron, J. A., Sanchez-Nieto, B., Exposito, M. R., Lageras, J. I., Sansaloni, F., & Sanchez-Doblado, F. (2014). A new online detector for estimation of peripheral neutron equivalent dose in organ. Med. Phys., 41(11), art. no. 112105. DOI: 10.1118/1.4898591.
  • 16. Haelg, R. A., Besserer, J., Boschung, M., Sánchez-Nieto, B., Muñiz, J. L., García-Fusté, M. J., Expósito,M. R., Barquero, R., Hartmann, G., Terrón, J. A., Pena, J., Méndez, R., Gutiérrez, F., Guerre, F. X., Roselló, J., Núñez, L., Brualla-González, L., Manchado, F., Lorente, A., Gallego, E., Capote, R., Planes, D., Lagares,J. I., González-Soto, X., Sansaloni, F., Colmenares, R., Amgarou, K., Morales, E., Bedogni, R., Cano, J. P., & Fernández, F. (2014). Measurements of the neutron dose equivalent for various radiation qualities, treatment. Phys. Med. Biol., 59(10), 2457–2468. DOI:10.1088/0031-9155/59/10/2457.
  • 17. Di Fulvio, A., Domingo, C., De San Pedro, M.,D’Agostino, E., Caresana, M., Tana, L., & d’Errico, F.(2013). Superheated emulsions and track etch detectors for photoneutron measurements. Radiat. Meas., 57, 19–28. DOI: 10.1016/j.radmeas.2013.11.004.
  • 18. Konefal, A., Orlef, A., & Bieniasiewicz, M. (2016).Measurements of neutron radiation and induced radioactivity for the new medical linear accelerator, the Varian TrueBeam. Radiat. Meas., 86, 8–15. DOI: 10.1016/j.radmeas.2015.12.039.
  • 19. Kowalik, A., Jackowiak, W., Malicki, J., Skórska, M., Adamczyk, M., Konstanty, E., Piotrowski, T., & Polaczek-Grelik, K. (2017). Measurements of doses from photon beam irradiation and scattered neutrons in an anthropomorphic phantom model of prostate cancer: a comparison between 3DCRT, IMRT and tomotherapy. Nukleonika, 62(1), 29–35. DOI: 10.1515/nuka-2017-0005.
  • 20. Romero-Exposito, M., Domingo, C., Sanchez-Doblado, F., Ortega-Gelabert, O., & Gallego, S. (2016). Experimental evaluation of neutron dose in radiotherapy patients: Which dose? Med. Phys., 43(1), 360–367.DOI: 10.1118/1.4938578.
  • 21. Particle Therapy Co-Operative Group (July, 2017). Particle Therapy Centers. Retrieved August 08, 2017, from https://www.ptcog.ch/index.php/facilities-inoperation, https://www.ptcog.ch/index.php/facilitiesunder-construction.
  • 22. IFJ Cyclotron Centre Bronowice. (2015). Cyclotron Centre Bronowice. Retrieved August 08, 2017, from https://ccb.ifj.edu.pl/en.home.html.
  • 23. Brenner, D. J., & Hatt, E. J. (2008). Secondary neutrons in clinical proton radiotherapy: A charged issue. Radiother. Oncol., 86(2), 165–170. DOI: 10.1016/j.radonc.
  • 24. Farah, J., Mares, V., Romero-Exposito, M., Trinkl, S., Domingo, C., Dufek, V., Klodowska, M., Kubancak, J., Knezevic, Z., Liszka, M., Majer, M., Miljanic, S., Ploc, O., Schinner, K., Stolarczyk, L., Trompier, F., Wielunski, M., Olko, P., & Harrison, R. M. (2015). Measurement of stray radiation within a scanning proton therapy facility: EURADOS WG9 intercomparison exercise of active dosimetry systems. Med. Phys., 42(5), 2572–2584. DOI: 10.1118/1.4916667.
  • 25. Schneider, U., & Haelg, R. (2015). The impact of neutrons in clinical proton therapy. Frontiers in Oncology, 5, art. no. 235. DOI: 10.3389/fonc.2015.00235.
  • 26. Kumada, H., Matsumura, A., Sakurai, H., Sakae, T., Yoshioka, M., Kobayashi, H., Matsumoto, H., Project for the development of the linac based NCT facility in University of Tsukuba. Appl. Radiat. Isot., 88, 211–215. DOI: 10.1016/j.apradiso.2014.02.018.
  • 27. Takada, K., Kumada, H., Isobe, T., Terunuma, T., Kamizawa, S., Sakurai, H., Sakae, T., & Matsumura, A. (2015). Whole-body dose evaluation with an adaptive treatment planning system for boron neutron capture therapy. Radiat. Prot. Dosim., 167(4), 584–590. DOI: 10.1093/rpd/ncu357.
  • 28. Durisi, E., Alikaniotis, K., Borla, O., Bragato, F., Costa, M., Giannini, G., Monti, V., Visca, L., Vivaldo, G., & Zanini, A. (2015). Design and simulation of an optimized e-linac based neutron source for BNCT research. Appl. Radiat. Isot., 106, 63–67. DOI: 10.1016/j.apradiso.2015.07.039.
  • 29. Miyatake, S. I., Kawabata, S., Hiramatsu, R., Kuroiwa, T., Suzuki, M., Kondo, N., & Ono, K. (2016). Boron neutron capture therapy for malignant brain tumors. Neurol. Med. Chir., 56(7), 361–371. DOI: 10.2176/nmc.ra.2015-0297.
  • 30. Zielczyński, M., Komochkov, M. M., Sychev, B. S., & Cherevatenko, A. P. (1968). Measurements of the quality factor for high energy protons in the water phantom. Nukleonika, 13(2), 165–170.
  • 31. Golnik, N., Cherevatenko, E. P., Serov, A. Y., Shvidkij, S. V., Sychev, B. S., & Zielczyński, M. (1997). Recombination index of radiation quality of medical high energy neutron beams. Radiat. Prot. Dosim., 70(1/4), 215–218.
  • 32. Golnik, N., Zielczyński, M., Bulski, W., Tulik, P., & Pałko, T. (2007). Measurements of the neutron dose near a 15 MV medical linear accelerator. Radiat. Prot. Dosim., 126(1/4), 619–622. DOI: 10.1093/rpd/ncm125.
  • 33. Golnik, N., Gryziński, M. A., Kowalska, M., Meronka, K., & Tulik, P. (2014). Characterization of radiation field for irradiation of biological samples at nuclear reactor – comparison of twin detector and recombination methods. Radiat. Prot. Dosim., 161(1/4),196–200. DOI: 10.1093/rpd/nct341.
  • 34. Spencer, L. V., & Attix, F. H. (1955). A theory of cavity ionization. Radiat. Res., 3(3), 239–254.
  • 35. Nahum, A. E. (1978). Water/air mass stopping power ratios for megavoltage photon and electron beams. Phys. Med. Biol., 23, 24–38.
  • 36. Spencer, L. V. (1971). Remarks on the theory of energy deposition in cavities. Acta Radiol. Ther. Phys. Biol., 10(1), 1–20.
  • 37. Zielczyński, M. (1988). Technique of determining dose in medical beams of high energy particles. Dubna, Russia: JINR. (JINR Commun. R16-88–531). (in Russian).
  • 38. Golnik, N., & Zielczyński, M. (1997). Dosimetry of neutron beams with energy of hundreds of MeV. In International Conference Neutrons in Research and Industry, June 9, 1996 (pp. 254–263). Crete, Greece: International Society for Optics and Photonics SPIE.
  • 39. Zielczyński, M., & Golnik, N. (1999). Dosimetry of TRIGA reactor fields using high pressure ionization chambers. Świerk, Poland: Institute of Atomic Energy. (Report IAE-61/A).
Uwagi
PL
Opracowanie w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ddbe3321-14cd-40a0-b31f-fb3701db9b2b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.