PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of forming tools and process parameters on surface roughness in incremental sheet forming

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Literature has vastly advocated for incremental sheet forming as a significant process for formation of sheet metal components, because of its higher formability in comparison with the rest of metal forming processes such as deep drawing and stamping. Due to high formability of incremental sheet forming it becomes important to investigate the main factors, influencing the quality of forming products. However, less attention has been given to investigate the inconsistencies reflected often in determining the effect of multiple forming parameters and parametric interactions comprising of spindle rotational speed and feed rate, tool size and sheet thickness, sheet thickness and step depth. This study investigates the effect of various principal factors including tool type, tool size, sheet thickness, spindle speed, feed rate, step increment including and their respective interaction on surface roughness. Research data was collected by undertaking extensive literature review of previous studies on incremental sheet forming regarding surface quality. A quantitative one way analysis of variance (ANOVA) was employed to analyze the significance and contribution of factors influencing surface quality of sheet forming. The findings highlight the contribution of forming parameters and their combined interactions on surface roughness. Based on the empirical findings, this study derives implications for the optimization of tool type, parametric interactions among principal factors and their respective optimized operational range for incremental sheet forming.
Twórcy
autor
  • Department of Industrial Engineering, University of Engineering & Technology Taxila, Pakistan
  • Department of Industrial Engineering, University of Engineering & Technology Taxila, Pakistan
  • Department of Industrial Engineering, University of Engineering & Technology Taxila, Pakistan
autor
  • Department of Industrial Engineering, University of Engineering & Technology Taxila, Pakistan
  • Department of Industrial Engineering, University of Engineering & Technology Taxila, Pakistan
  • Department of Industrial Engineering, University of Engineering & Technology Taxila, Pakistan
Bibliografia
  • 1. Duflou, J., et al., Laser assisted incremental forming: formability and accuracy improvement. CIRP Annals-Manufacturing Technology, 2007. 56(1): p. 273-276.
  • 2. Palumbo, G. and M. Brandizzi, Experimental investigations on the single point incremental forming of a titanium alloy component combining static heating with high tool rotation speed. Materials & Design, 2012. 40: p. 43-51.
  • 3. Adams, D. and J. Jeswiet, Single-point incremental forming of 6061-T6 using electrically assisted forming methods. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2014. 228(7): p. 757-764.
  • 4. Fan, G., et al., Electric hot incremental forming of Ti-6Al-4V titanium sheet. The International Journal of Advanced Manufacturing Technology, 2010. 49(9): p. 941-947.
  • 5. Durante, M., A. Formisano, and A. Langella, Observations on the influence of tool-sheet contact conditions on an incremental forming process. Journal of materials engineering and performance, 2011. 20(6): p. 941-946.
  • 6. Bagudanch, I., M. Sabater, and M.L. Garcia- Romeu, Single Point versus Two Point Incremental Forming of thermoplastic materials. Advances in Materials and Processing Technologies, 2017. 3(1): p. 135-144.
  • 7. Deepak, S.S., COMPUTER AIDED MANUFACTURING FACTORS AFFECTING REDUCTION OF SURFACE ROUGHNESS AND THICKNESS IN INCREMENTAL SHEET FORMING PROCESS. COMPUTER, 2017. 4(07).
  • 8. Gulati, V., et al., Process parameters optimization in single point incremental forming. Journal of The Institution of Engineers (India): Series C, 2016. 97(2): p. 185-193.
  • 9. Shanmuganatan, S. and V. Senthil Kumar. An experimental investigation on profile forming of an end cap using Al 3003 (O). in Advanced Materials Research. 2011. Trans Tech Publ.
  • 10. Li, Y., et al., Simulation and experimental observations of effect of different contact interfaces on the incremental sheet forming process. Materials and Manufacturing Processes, 2014. 29(2): p. 121-128.
  • 11. Cawley, B., D. Adams, and J. Jeswiet, Examining tool shapes in single point incremental forming. Proc NAMRI/SME, 2012. 26: p. 201-206.
  • 12. Adams, D.W., Improvements on single point incremental forming through electrically assisted forming, contact area prediction and tool development. 2014: Queen’s University (Canada).
  • 13. Pickering, C. and J. Byrne, The benefits of publishing systematic quantitative literature reviews for PhD candidates and other early-career researchers. Higher Education Research & Development, 2014. 33(3): p. 534-548.
  • 14. Ham, M. and J. Jeswiet, Single point incremental forming and the forming criteria for AA3003. CIRP Annals-Manufacturing Technology, 2006. 55(1): p. 241-244.
  • 15. Ham, M. and J. Jeswiet, Forming limit curves in single point incremental forming. CIRP Annals-Manufacturing Technology, 2007. 56(1): p. 277-280.
  • 16. Shim, M.-S. and J.-J. Park, The formability of aluminum sheet in incremental forming. Journal of Materials Processing Technology, 2001. 113(1): p. 654-658.
  • 17. Kim, Y. and J. Park, Effect of process parameters on formability in incremental forming of sheet metal. Journal of materials processing technology, 2002. 130: p. 42-46.
  • 18. Petek, A., et al., Comparison of alternative approaches of single point incremental forming processes. Journal of materials processing technology, 2009. 209(4): p. 1810-1815.
  • 19. Cavaler, L., et al., Surface roughness in the incremental forming of AISI 304L stainless steel sheets. J. Mechan. Eng. Phys, 2010. 1(2): p. 87-98.
  • 20. Prashant, M., et al., Single Point Incremental Sheet Forming By CNC Vertical Milling Machine. Imperial Journal of Interdisciplinary Research, 2016. 2(11).
  • 21. Pengtao, S., et al., Research on the Influencing Factors of” Scale Veins” of Single Point Incremental Forming Workpieces Surface. Open Mechanical Engineering Journal, 2015. 9: p. 1025-1032.
  • 22. Khare, U. and M. Pandagale, A review of fundamentals and advancement in incremental sheet metal forming. IOSR Journal of Mechanical and Civil Engineering, 2014: p. 42-46.
  • 23. Ziran, X., et al., The performance of flat end and hemispherical end tools in single-point incremental forming. The International Journal of Advanced Manufacturing Technology, 2010. 46(9): p. 1113-1118.
  • 24. Lu, B., et al., Mechanism investigation of friction-related effects in single point incremental forming using a developed oblique roller-ball tool. International Journal of Machine Tools and Manufacture, 2014. 85: p. 14-29.
  • 25. Ham, M., B. Powers, and J. Loiselle. Surface topography from single point incremental forming using an acetal tool. in Key Engineering Materials. 2013. Trans Tech Publ.
  • 26. Chinnaiyan, P. and A. Jeevanantham, Multi-objective optimization of single point incremental sheet forming of AA5052 using Taguchi based grey relational analysis coupled with principal component analysis. International journal of precision engineering and manufacturing, 2014. 15(11): p. 2309-2316.
  • 27. Yazar, K., P. Date, and K. Narasimhan, Experimental studies on single point incremental forming of metallic sheets.
  • 28. Jeswiet, J., et al., Single point and asymmetric incremental forming. Advances in Manufacturing, 2015. 3(4): p. 253-262.
  • 29. Bhattacharya, A., et al., Formability and surface finish studies in single point incremental forming. Journal of manufacturing science and engineering, 2011. 133(6): p. 061020.
  • 30. Kurra, S. and S. Regalla, Multi-objective optimisation of single point incremental sheet forming using Taguchi-based grey relational analysis. International Journal of Materials Engineering Innovation, 2015. 6(1): p. 74-90.
  • 31. Radu, C., Effects of Process Parameters on the Quality of Parts Processed by Single Point Incremental Forming. Int. J. Mod. Manuf. Technol, 2011. 3(2): p. 91-96.
  • 32. Shanmuganatan, S. and V.S. Kumar, Metallurgical analysis and finite element modelling for thinning characteristics of profile forming on circular cup. Materials & Design, 2013. 44: p. 208-215.
  • 33. Radu, C., et al., The effect of residual stresses on the accuracy of parts processed by SPIF. Materials and Manufacturing Processes, 2013. 28(5): p. 572-576.
  • 34. Li, X., et al. Single-point incremental forming of 2024-T3 aluminum alloy sheets. in AIP Conference Proceedings. 2013. AIP.
  • 35. Jagtap, R., et al., An experimental study on the influence of tool path, tool diameter and pitch in single point incremental forming (SPIF). Advances in Materials and Processing Technologies, 2015. 1(3-4): p. 465-473.
  • 36. Malwad, D. and V. Nandedkar, Deformation mechanism analysis of single point incremental sheet metal forming. Procedia Materials Science, 2014. 6: p. 1505-1510.
  • 37. Liu, Z., et al., Modeling and optimization of surface roughness in incremental sheet forming using a multi-objective function. Materials and Manufacturing Processes, 2014. 29(7): p. 808-818.
  • 38. Strano, M., Technological representation of forming limits for negative incremental forming of thin aluminum sheets. Journal of manufacturing processes, 2005. 7(2): p. 122-129.
  • 39. Jeswiet, J., et al., Asymmetric single point incremental forming of sheet metal. CIRP Annals-Manufacturing Technology, 2005. 54(2): p. 88-114.
  • 40. Le, V., A. Ghiotti, and G. Lucchetta, Preliminary studies on single point incremental forming for thermoplastic materials. International Journal of Material Forming, 2008. 1: p. 1179-1182.
  • 41. Jackson, K., J. Allwood, and M. Landert, Incremental forming of sandwich panels. Journal of Materials Processing Technology, 2008. 204(1): p. 290-303.
  • 42. Arfa, H., R. Bahloul, and H. BelHadjSalah, Finite element modelling and experimental investigation of single point incremental forming process of aluminum sheets: influence of process parameters on punch force monitoring and on mechanical and geometrical quality of parts. International journal of material forming, 2013. 6(4): p. 483-510.
  • 43. Jeswiet, J., E. Hagan, and A. Szekeres, Forming parameters for incremental forming of aluminium alloy sheet metal. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2002. 216(10): p. 1367-1371.
  • 44. Hagan, E. and J. Jeswiet, Analysis of surface roughness for parts formed by computer numerical controlled incremental forming. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2004. 218(10): p. 1307-1312.
  • 45. Attanasio, A., E. Ceretti, and C. Giardini, Optimization of tool path in two points incremental forming. Journal of Materials Processing Technology, 2006. 177(1): p. 409-412.
  • 46. Desai, B.V., K.P. Desai, and H.K. Raval, Die-Less rapid prototyping process: Parametric investigations. Procedia Materials Science, 2014. 6: p. 666-673.
  • 47. Patel, J.R., et al., Analysis of Variance for Surface Roughness Produced During Single Point Incremental Forming Process. Analysis, 2015. 2(3).
  • 48. Khazaali, H., Determining frustum depth of 304 stainless steel plates with various diameters and thicknesses by incremental forming. Journal of Mechanical Science and Technology, 2014. 28(8): p. 3273-3278.
  • 49. Uttarwar, P., S. Raini, and D. Malwad, Optimization of process parameter on Surface Roughness (Ra) and Wall Thickness on SPIF using Taguchi method. International Research Journal of Engineering and Technology, 2015.
  • 50. Mulay, A.S. and R. Navthar, Experimental and numerical studies on single point incremental forming of commercial aluminum alloy.
  • 51. Lu, H., et al., Study on step depth for part accuracy improvement in incremental sheet forming process. Advanced Materials Research, 2014(939).
  • 52. Lasunon, O.U. Surface roughness in incremental sheet metal forming of AA5052. in Advanced Materials Research. 2013. Trans Tech Publ.
  • 53. Rattanachan, K. and C. Chungchoo. The Effected of Single Point Incremental Forming Process Parameters on the Formed Part Surface Roughness. in Advanced Materials Research. 2014. Trans Tech Publ.
  • 54. Bermudez Paramo, G.J., F.A. Bustamante-Correa, and A.J. Benitez-Lozano, STatistical analysis of the main incremental forming process parameters that contribute to change the roughness in an experimental geometry. DYNA-Ingeniería e Industria, 2016. 91(6).
  • 55. Mugendiran, V., A. Gnanavelbabu, and R. Ramadoss, Parameter optimization for surface roughness and wall thickness on AA5052 Aluminium alloy by incremental forming using response surface methodology. Procedia Engineering, 2014. 97: p. 1991-2000.
  • 56. Silva, P.J., L.M. Leodido, and C.R.M. Silva. Analysis of incremental sheet forming parameters and tools aimed at rapid prototyping. in Key Engineering Materials. 2013. Trans Tech Publ.
  • 57. Shah, H. and S. Chaudhary, Optimization of process parameters for incremental sheet forming process. International Journal for Technological Research in Engineering. 3(7): p. 2347-4718.
  • 58. Rattanachan, K. and C. Chungchoo, Formability in single point incremental forming of dome geometry. AIJSTPME, 2009. 2(4): p. 57-63.
  • 59. Petek, A., K. Kuzman, and J. Kopac, Deformations and forces analysis of single point incremental sheet metal forming. Archives of Materials science and Engineering, 2009. 35(2): p. 35-42.
  • 60. Davarpanah, M.A., et al., Effects of incremental depth and tool rotation on failure modes and microstructural properties in Single Point Incremental Forming of polymers. Journal of materials processing technology, 2015. 222: p. 287-300.
  • 61. Obikawa, T., S. Satou, and T. Hakutani, Dieless incremental micro-forming of miniature shell objects of aluminum foils. International Journal of Machine Tools and Manufacture, 2009. 49(12): p. 906-915.
  • 62. Xu, D., et al., Mechanism investigation for the influence of tool rotation and laser surface texturing (LST) on formability in single point incremental forming. International Journal of Machine Tools and Manufacture, 2013. 73: p. 37-46.
  • 63. Hussain, G., L. Gao, and N. Hayat, Forming parameters and forming defects in incremental forming of an aluminum sheet: correlation, empirical modeling, and optimization: part A. Materials and Manufacturing Processes, 2011. 26(12): p. 1546-1553.
  • 64. Bagudanch, I., et al., Forming force and temperature effects on single point incremental forming of polyvinylchloride. Journal of materials processing technology, 2015. 219: p. 221-229.
  • 65. Manco, G. and G. Ambrogio, Influence of thickness on formability in 6082-T6. International Journal of Material Forming, 2010. 3: p. 983-986.
  • 66. Silva, M.B., et al., Failure mechanisms in single-point incremental forming of metals. The International Journal of Advanced Manufacturing Technology, 2011. 56(9-12): p. 893-903.
  • 67. Fang, Y., et al., Analytical and experimental investigations on deformation mechanism and fracture behavior in single point incremental forming. Journal of Materials Processing Technology, 2014. 214(8): p. 1503-1515.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ddb61e03-d136-4449-8986-a580741047c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.