Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Metoda klasyfikacji bazująca na SVM I adaptacyjnej logice rozmytej
Języki publikacji
Abstrakty
In this paper, we propose a new classification approach which combines the advantages of both Gaussian-kernel Support Vector Machine and Adaptive Fuzzy Inference System. Instead of generating a large number of candidate rules as in fuzzy classification, the proposed method adopts the decision trees to generate rules directly from training data. Decision trees provide architecture to generate fuzzy IF–THEN rules from the training data where the fuzzy parameters of the rules would be optimized using Genetic Algorithm. The Gaussian-kernel SVM will be used in the classification phase using the parameters obtained from Particle Swarm Optimization. Experimental results of the proposed approach has proved significantly better accuracy than other state-of-the-art classification methods by testing it on benchmark UCI datasets
Zaproponowano nową metodę klasyfikacji łączącą zalety metod: Gaussian-Kernel Support Vector Machine i Adaptive Fuzzy Interference System. Wykorzystano drzewo decyzyjne do tworzenia zasad klasyfikacji bezpośrednio z danych treningowych. Parametry logiki rozmytej określano wykorxzystując algorytm genetyczny. A parametry SVM wykorzystując lagorytm mrówkowy.
Wydawca
Czasopismo
Rocznik
Tom
Strony
14--22
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
- Department of Communication, Electronics and Computer Engineering, Faculty of Engineering, Tafila Technical University, Tafila 66110, Jordan
autor
- Department of Communication, Electronics and Computer Engineering, Faculty of Engineering, Tafila Technical University, Tafila 66110, Jordan
autor
- Department of Communication, Electronics and Computer Engineering, Faculty of Engineering, Tafila Technical University, Tafila 66110, Jordan
Bibliografia
- [1] Zadeh L. A., Fuzzy Sets, Information and Control, 8 (1965), No. 3, 338-353.
- [2] Liu G., Chen J., Zhong J., An integrated SVM and fuzzy AHP approach for selecting third party logistics providers, Przegląd Elektrotechniczny , 88 (2012), No. 18, 5-8.
- [3] Yang L., Mingzi X., Jin Z., A Novel Adaptive Fuzzy Controller Approach of Brushless DC Motors without Hall and Position Sensors, Przegląd Elektrotechniczny, 88 (2012), No. 12a, 290294.
- [4] Cao H., Wang Y., Jia L., Adaptive Neuro-Fuzzy Inference System-Based Pulverizing Capability Model for Running Time Assessment of Ball Mill Pulverizing System, Przegląd Elektrotechniczny , 89 (2013), No. 5, 122-127.
- [5] Scholkopf B., Smola A. J., Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Cambridge, MA, USA: MIT Press, 2001.
- [6] Karatzoglou A., Meyer D., Hornik K., Support Vector Machines in R, Journal of Statistical Software, 15(2006), No. 9, 1-28.
- [7] Burges C. J. C., A Tutorial on Support Vector Machines for Pattern Recognition, Data Min. Knowl. Discov., 2 (1998), No. 2, 121-167.
- [8] Christianini N, Shawe-Taylor J., An introduction to support Vector Machines: and other kernel-based learning methods, Newyork 1999.
- [9] Vapnik V. N., The Nature of Statistical Learning Theory, USA: Springer-Verlag, 1995.
- [10] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines: And Other Kernel-Based Learning Methods. New York, NY, USA: Cambridge University Press, 2000.
- [11] Kennedy J., Eberhart R., Particle swarm optimization, IEEE International Conference on Neural Networks, 4 (1995), 19421948.
- [12] Sheng Ding and Shunxin Li, PSO parameters optimization based support vector machines for hyperspectral classification, 2009 1st International Conference on Information Science and Engineering (ICISE), Nanjing, 2009, 4066-4069.
- [13] Eberhart R. C., Shi Y., Kennedy J., Swarm Intelligence (the Morgan Kaufmann Series in Evolutionary Computation). Morgan Kaufmann, 2001.
- [14] Cintra, M. E., Monard, M. C., Camargo, H. A., A Fuzzy decision tree algorithm based on C4.5, Mathware & Soft Computing Magazine. 20 (2013), No. 1, 56-62.
- [15] Ardjani F., Sadouni K., Benyettou M., Optimization of SVM MultiClass by particle swarm (PSO-SVM), 2010 2nd International Workshop on Database Technology and Applications (DBTA), Wuhan, 2010, 1-4.
- [16] De Souza B. F., De Carvalho A. C. P. L. F., Calvo R., Ishii R. P., Multiclass SVM model selection using particle swarm optimization, 2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06), Rio de Janeiro, Brazil, 2006, 3136.
- [17] JAJCZYK J., Optimisation using a parallelised genetic algorithm on a personal computer, Przegląd Elektrotechniczny , 91 (2015), No. 7, 36-38.
- [18] Hekim M., ANN-based classification of EEG signals using the average power based on rectangle approximation window, Przegląd Elektrotechniczny , 88 (2012), No.18, 210-215.
- [19] Blake C., Merz C., UCI repository of machine learning databases.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ddb5f8b7-05e6-41f2-98cd-d6eefa65c6d5