PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of EIS technique to investigate the adsorption of different types of depressants on pyrite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Batch scale flotation tests are generally performed for testing effects of flotation reagents on flotation performance. This method becomes costly and time-consuming for testing a number of flotation reagents such as collectors, depressants and activators. Therefore, developing alternative lowcost, fast and sensitive methods have recently been the subject of intense research to obtain a better flotation performance. The electrochemical techniques have been used for the surface characterization of sulfide minerals. Electrochemical Impedance Spectroscopy (EIS) is one of these techniques that can provide significant information related to surface characteristics, reagent adsorption on the sulfide minerals. In this study, EIS was used as an alternative technique to the conventional batch scale flotation tests for pre-screening of various flotation reagents using two pyrite samples containing different contents of Au and As. Sodium cyanide (NaCN), sodium metabisulfite (SMBS), and a polymeric depressant Aero 7261A were tested as depressants for two pyrite samples (Sample A from a Carlintrend ore and Sample B from a Sulfidic ore from South America) having different electrochemical characteristics. EIS results showed that the effects of the sequence of addition of collector (Potassium amyl xanthate - KAX) and depressant were also investigated to evaluate the stability of depressant and collector compounds formed at the surface. The sequence of addition of the collector and depressants was significant for Sample A but not for Sample B. The results show that EIS can be used as an effective tool for testing the performance of various flotation reagents and their mixtures on sulfide minerals.
Rocznik
Strony
112--126
Opis fizyczny
Bibliogr. 52 poz., rys. kolor.
Twórcy
  • Hacettepe University, Department of Chemistry, Beytepe, Ankara-06800, Turkey
autor
  • Hacettepe University, Department of Chemistry, Beytepe, Ankara-06800, Turkey
autor
  • Newmont Corporation, 10101 E Dry Creek Road, Englewood CO 80112, USA
  • Hacettepe University, Department of Mining Engineering, Beytepe, Ankara- 06800, Turkey
Bibliografia
  • ABRAMOV A.A., AVDOHIN V.M., 1997. Oxidation of Sulfide Minerals in Beneficiation Processes, Gordon and Breach Science Publishers, 319.
  • ACKERMAN P., HARRIS G., KLIMPEL R., APLAN F., 1987. Evaluation of flotation collectors for copper sulfides and pyrite, III. Effect of xanthate chain length and branching, International journal of mineral processing, 21, 141-156.
  • AI G., HUANG W., YANG X., LI X., 2017. Effect of collector and depressant on monomineralic surfaces in fine wolframite flotation system, Separation and Purification Technology, 176, 59-65.
  • ALLISON S.A., GOLD L.A., NICOLE M.J., GRANVILLE A.,1972. A determination of the products of reaction between various sulphide minerals and aqueous xanthate solution, and a correlation of the products with electrode rest potentials, Metal. Trans, 3, 2613-2618.
  • BICAK O., EKMEKCI Z., BRADSHAW D., HARRIS P., 2007. Adsorption of guar gum and CMC on pyrite, Minerals engineering, 20, 996-1002.
  • BOULTON A., FORNASIERO D., RALSTON J., 2001. Selective depression of pyrite with polyacrylamide polymers, International Journal of Mineral Processing, 61 (2001) 13-22.
  • CHANDRA A., GERSON A.R., 2010. The mechanisms of pyrite oxidation and leaching: a fundamental perspective, Surface Science Reports, 65, 293-315.
  • DUNNE R., 2005. Flotation of gold and gold-bearing ores, Developments in mineral processing, 15, 309-344.
  • EKMEKCI Z., ASLAN A., HASSOY H., 2004. Effects of EDTA on Selective Flotation of Sulphide Minerals, Physicochemical Problems of Mineral Processing, 38, 9-94.
  • EKMEKCI Z., BAGCI E.T., CAN M., BICAK Ö., PEKMEZ K., 2016. Electrochemical predictions of flotability. The Optimization of Mineral Processes by Modelling and Simulation 2008–2011, AMIRA P9O Mineral Processing, 417–486.
  • EKMEKCI Z., BECKER M. B, BAGCI E. T., BRADSHAW D., 2010. An impedance study of the adsorption of CuSO4 and SIBX on pyrrhotite samples of different provenances, Minerals Engineering, 23, 903-907.
  • EKMEKCI Z., BECKER M., TEKES E.B., BRADSHAW D., 2010. The relationship between the electrochemical, mineralogical and flotation characteristics of pyrrhotite samples from different Ni Ores, Journal of Electroanalytical Chemistry, 647, 133-143.
  • ERTEKIN Z., PEKMEZ K., EKMEKCI Z., 2016. Evaluation of collector adsorption by electrochemical impedance spectroscopy, International Journal of Mineral Processing, 154, 16-23.
  • FORBES E. F., SMITH L., VEPSALAINEN M., 2018. Effect of pyrite type on the electrochemistry of chalcopyrite/pyrite interactions, Physicochem. Probl. Miner. Process. 54 (4), 1116-1129.
  • GOOLD L.A., FINKELSTEIN N.P., 1972. The reaction of sulphide minerals with thiol compounds. NIMM, Johannesburg, South Africa, Report No, 1439.
  • GUO B., 2016. The Poisoning of Pyrite Surface upon Xanthate Adsorption by Cyanide in Mildly Acidic Media, Electroanalysis, 28, 724-732.
  • GUO B., LIN X., FU W., KU J., 2020. Establishment of electrochemical methods to examine the adsorption of flotation surfactants onto a mineral surface, Journal of Chemical Technology & Biotechnology, 95, 1580-1589.
  • GUO B., PENG Y., PARKER G., 2016. Electrochemical and spectroscopic studies of pyrite–cyanide interactions in relation to the depression of pyrite flotation, Minerals Engineering, 92, 78-85.
  • HUAI Y., PLACKOWSKI C., PENG Y., 2017. The surface properties of pyrite coupled with gold in the presence of oxygen, Minerals Engineering, 111, 131-139.125 Physicochem. Probl. Miner. Process., 57(3), 2021, 112-126
  • HUAI Y., PLACKOWSKI C., PENG Y., 2019. The effect of gold coupling on the surface properties of pyrite in the presence of ferric ions, Applied Surface Science, 488, 277-283.
  • HUANG Z., WANG J., SUN W., HU Y., CAO J., GAO Z., 2019. Selective flotation of chalcopyrite from pyrite using diphosphonic acid as collector, Minerals Engineering, 140, 105890.
  • JIANG C., WANG X., PAREKH B., LEONARD J., 1988. The surface and solution chemistry of pyrite flotation with xanthate in the presence of iron ions, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 136 51-62.
  • KAPPES R., BROSNAHAN D., GATHJE J., 2010. The effect of mineral liberation on the floatabilities of pyrite, arsenopyrite and arsenian pyrite for Carlin Trend ores, Proceedings XXV international mineral processing congress, 2913-2926.
  • KAPPES R., GATHJE J., 2010. The metallurgical development of an enargite-bearing deposit, Proceedings of the XXV International Mineral Processing Congress (IMPC), Brisbane, Australia, 6-10.
  • KARIUKI J.K., 2012. An electrochemical and spectroscopic characterization of pencil graphite electrodes, Journal of the Electrochemical Society, 159, H747.
  • KLIMPEL R., 1999. Industrial experiences in the evaluation of various flotation reagent schemes for the recovery of gold, Mining, Metallurgy & Exploration, 16, 1-11.
  • KNOLL F., TAYLOR J., 1985. Advances in electrostatic separation, Mining, Metallurgy & Exploration, 2, 106-114.
  • KOCABAG D., GULER T., 2007. Two-liquid flotation of sulphides: An electrochemical approach, Minerals Engineering, 20, 1246-1254.
  • LAI C.-H., LU M.-Y., CHEN L.-J., 2012. Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage, Journal of Materials Chemistry, 22, 19-30.
  • LI L., POLANCO C., GHAHREMAN A., 2016. Fe (III)/Fe (II) reduction-oxidation mechanism and kinetics studies on pyrite surfaces, Journal of Electroanalytical Chemistry, 774, 66-75.
  • LI M., WEI D., LIU Q., LIU W., ZHENG J., SUN H., 2015. Flotation separation of copper–molybdenum sulfides using chitosan as a selective depressant, Minerals Engineering, 83, 217-222.
  • MONTE M., LINS F., OLIVEIRA J., 1997. Selective flotation of gold from pyrite under oxidizing conditions, International journal of mineral processing, 51, 255-267.
  • MONTEIRO M.C., KOPER M.T., 2019. Alumina contamination through polishing and its effect on hydrogen evolution on gold electrodes, Electrochimica Acta, 325, 134915.
  • MOSLEMI H., GHARABAGHI M., 2017. A review on electrochemical behavior of pyrite in the froth flotation process, Journal of Industrial and Engineering Chemistry, 47, 1-18.
  • MU Y, CHENG Y., PENG Y., 2020. The interaction between grinding media and collector in pyrite flotation at neutral and slightly acidic pH, Minerals Engineering, 145, 106063.
  • MU Y., LI L., PENG Y., 2017. Surface properties of fractured and polished pyrite in relation to flotation, Minerals Engineering, 101, 10-19.
  • MU Y., PENG Y., LAUTEN R.A., 2015. Electrochemistry aspects of pyrite in the presence of potassium amyl xanthate and a lignosulfonate-based biopolymer depressant, Electrochimica Acta, 174, 133-142.
  • MU Y., PENG Y., LAUTEN R.A., 2016a. The depression of pyrite in selective flotation by different reagent systems–A Literature review, Minerals Engineering, 96, 143-156.
  • MU Y., PENG Y., LAUTEN R.A., 2016b. The mechanism of pyrite depression at acidic pH by lignosulfonate-based biopolymers with different molecular compositions, Minerals Engineering, 92, 37-46.
  • NICOL M.J., 2017. The use of impedance measurements in the electrochemistry of the dissolution of sulfide minerals, Hydrometallurgy, 169, 99-102.
  • PANG J., CHANDER S., 1990. Oxidation and wetting behavior of chalcopyrite in the absence and presence of xanthates, Mining, Metallurgy & Exploration, 7, 149-155.
  • PAUPORTE T., SCHUHMANN D., 1996. An electrochemical study of natural enargite under conditions relating to those used in flotation of sulphide minerals, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 111, 1-19.
  • PRESTIDGE C.A., RALSTON J., SMART R.S.C., 1993. The competitive adsorption of cyanide and ethyl xanthate on pyrite and pyrrhotite surfaces, International journal of mineral processing, 38, 205-233.
  • RATH R., SUBRAMANIAN S., PRADEEP T., 2000. Surface chemical studies on pyrite in the presence of polysaccharidebased flotation depressants, Journal of Colloid and Interface Science, 229, 82-91.
  • VALDIVIESO A.L., CERVANTES T.C., SONG S., CABRERA A.R., LASKOWSKİ J., 2004. Dextrin as a non-toxic depressant for pyrite in flotation with xanthates as collector, Minerals engineering, 17, 1001-1006.126 Physicochem. Probl. Miner. Process., 57(3), 2021, 112-126
  • VELASQUEZ P., LEINEN D., PASCUAL J., RAMOS-BARRADO J.R., GREZ P., GOMEZ H., SCHREBLER R., DEL RIO R., CORDOVA R. Cordova, 2005. A chemical, morphological, and electrochemical (XPS, SEM/EDX, CV, and EIS) analysis of electrochemically modified electrode surfaces of natural chalcopyrite (CuFeS2) and pyrite (FeS2) in alkaline solutions, The Journal of Physical Chemistry B, 109, 4977-4988.
  • VENTER J.A., VERMAAK M.K.G., 2008. EIS measurements of dithiocarbonate and trithiocarbonate interactions with pyrite and copper, Minerals Engineering 21, 559–567.
  • ZHANG W., SUN W., HU Y. Hu, CAO J., GAO Z., 2019. Selective flotation of pyrite from galena using chitosan with different molecular weights, Minerals, 9, 549.
  • ZHAO C., HUANG D., CHEN J., LI Y., CHEN Y., LI W., 2016. The interaction of cyanide with pyrite, marcasite and pyrrhotite, Minerals Engineering, 95, 131-137.
  • ZHAO S., GUO B., PENG Y., MAI Y., 2017. An impedance spectroscopy study on the mitigation of clay slime coatings on chalcocite by electrolytes, Minerals Engineering, 101, 40-46.
  • ZHENG X.-F., LIU L.-Z, NIE Z.-Y., YANG Y., CHEN J.-H., YANG H.-Y., XIA J.-l., 2019. The differential adsorption mechanism of hexahydrated iron and hydroxyl irons on a pyrite (1 0 0) surface: A DFT study and XPS characterization,Minerals Engineering, 138, 215-225.
  • ZHU Y.M., JIA J.W., MA Y.W., GAO P., HAN Y.X., ZHAO J.J., LI J.B., 2013. Adsorption of Sodium Cyanide on Pyrite Particle Surface, Advanced Materials Research, Trans Tech Publ, 3-9
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ddafe7fe-e3c1-42e8-9b8d-6d684ef18e48
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.