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Abstract. In order to diagnose a range of cardiac conditions, it is important to conduct an accurate evaluation of either phonocardiogram (PCG) 

and electrocardiogram (ECG) data. Artificial intelligence and machine learning-based computer-assisted diagnostics are becoming increasingly 
commonplace in modern medicine, assisting clinicians in making life-or-death decisions. The requirement for an enormous amount of information 

for training to establish the framework for a deep learning-based technique is an empirical challenge in the field of medicine. This increases the risk 

of personal information being misused. As a direct result of this issue, there has been an explosion in the study of methods for creating synthetic patient 
data. Researchers have attempted to generate synthetic ECG or PCG readings. To balance the dataset, ECG data were first created on the MIT-BIH 

arrhythmia database using LS GAN and Cycle GAN. Next, using VGGNet, studies were conducted to classify arrhythmias for the synthesized ECG signals. 

The synthesized signals performed well and resembled the original signal and the obtained precision of 91.20%, recall of 89.52% and an F1 score 

of 90.35%. 
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GENERATYWNY MODEL Z DEEP FAKE AUGUMENTATION DLA SYGNAŁÓW 

Z FONOKARDIOGRAMU ORAZ ELEKTROKARDIOGRAMU W STRUKTURACH LSGAN 

ORAZ CYCLE GAN 

Streszczenie. W celu zdiagnozowania szeregu chorób serca, istotne jest przeprowadzenie dokładnej oceny danych z fonokardiogramu (PCG) 

i elektrokardiogram (EKG). Sztuczna inteligencja i diagnostyka wspomagana komputerowo, oparta na uczeniu maszynowym stają się  coraz bardziej 
powszechne we współczesnej medycynie, pomagając klinicystom w podejmowaniu krytycznych decyzji. Z kolei, Wymóg ogromnej ilości informacji 

do trenowania, w celu ustalenia platformy (ang. framework) techniki, opartej na głębokim uczeniu stanowi empiryczne wyzwanie w obszarze medycyny. 

Zwiększa to ryzyko niewłaściwego wykorzystania danych osobowych. Bezpośrednim skutkiem tego problemu był gwałtowny rozwój badań nad metodami 
tworzenia syntetycznych danych pacjentów. Badacze podjęli próbę wygenerowania syntetycznych odczytów diagramów EKG lub PCG. Stąd, w celu 

zrównoważenia zbioru danych, w pierwszej kolejności utworzono dane EKG w bazie danych arytmii MIT-BIH przy użyciu struktur sieci generatywnych 

LSGAN i Cycle GAN. Następnie, wykorzystując strukturę sieci VGGNet, przeprowadzono badania, mające na celu klasyfikację arytmii na potrzeby 
syntetyzowanych sygnałów EKG. Dla wygenerowanych sygnałów, przypominających sygnał oryginalny uzyskano dobre rezultaty. Należy podkreślić, 

że uzyskana dokładność wynosiła 91,20%, powtarzalność 89,52% i wynik F1 – odpowiednio 90,35%. 

Słowa kluczowe: arytmia, osłuchiwanie, elektrokardiogram, fonokardiogram, sieci generatywne 

Introduction 

Cardiovascular diseases are a group of serious, life-threatening 

conditions that affect millions of people every year [23]. 

Cardiovascular disease is typically diagnosed in the clinic using 

information gathered from a variety of different detection 

methods. The disorders in heart beat or any abnormality can be 

termed as arrhythmias, which can range in severity from a minor 

inconvenience or pain to a life-threatening emergency. When 

the normal flow of the heart's electrical impulses is interrupted, 

an arrhythmia develops. It's possible that the heartbeat is too slow, 

too rapid, or otherwise irregular. Heart illness can be effectively 

predicted and diagnosed with the help of PCG and ECG signals. 

Artificial auscultation is a diagnostic tool for the heart that 

is efficient in terms of both time and money, but it requires 

clinicians to have extensive training in the field. 

The electrocardiogram is a valuable tool for detecting 

arrhythmias or abnormalities as it enables the measurement 

of the bio-electrical activities of the heart whereas the PCG 

records the heart sounds. The bio-electrical activities of the heart 

can be recorded by means of an electrocardiogram (ECG), 

a noninvasive procedure. Electrodes attached to the patient's skin 

allowed an ECG machine to record the rhythmic contractions 

and relaxations of the heart. The T wave, the P wave, and the QRS 

complex are all components of a normal ECG signal. For example, 

Atrial fibrillation has been linked to abnormalities in the ECG, 

where there are no P-waves and an irregular ventricular 

rhythm [1]. Routinely, cardiologists undertake ECG screening 

for patients, which takes substantial human effort and costly 

medical procedures to detect heart problems and provide 

appropriate therapy for those concerns. 

Regarding the PCG signals, medical professionals utilize 

a phonocardiograph to track the auditory manifestations 

and vibrations generated by the heart, encompassing those arising 

from the closure of the aortic, pulmonary, and atrioventricular 

valves. The information is depicted in figure 2. After the 

atrioventricular and semilunar valves close, the heart makes two 

distinct sounds, S1 and S2, during systole and diastole, 

respectively [3].  

Due to the comparatively complicated waveform 

of the Phonocardiogram (PCG) signal in comparison 

to the Electrocardiogram (ECG), as well as the inherent challenges 

associated with the collecting approach that often result 

in significant disturbances, the widespread adoption 

and application of PCG signal analysis have been limited [16]. 

The reliability of visually assessing an electrocardiogram (ECG) 

for detecting heart abnormalities may be limited. The integration 

of deep network topologies into the automatic processing of ECG 

and PCG data, as well as other domains within the medical 

and healthcare industries, has become increasingly prevalent 

with the rise in popularity of deep learning approaches. 

In recent years, the emergence of artificial intelligence 

as a potential option has been facilitated by technological 

advancements, particularly in the field of medical applications [7]. 

While deep learning algorithms are becoming increasingly used 

in e-health applications, large datasets are still required 

for the discovery of critical determinants that improve prediction 

or diagnostic accuracy.  

The success of a deep learning model is highly dependent 

on the availability of both many training samples and a high-

quality labelled dataset. Inadequate data or an imbalanced dataset 

might lead to a non-convergent training phase and biased 

classification results when training a deep learning model. 
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A big and well-balanced dataset is required for the Deep Learning 

model in order to avoid these problems. Despite having access 

to a big and evenly distributed dataset for training, would be 

ideal, this is not always possible because to factors such 

as the rarity of aberrant cardiac events and the scarcity 

of available cardiologists who can reliably identify (annotate) 

the waveforms. Because only highly trained doctors are capable 

of accurately or exactly annotating ECG recordings, the number 

of recordings that have been annotated is also restricted. 

Therefore, there is a need for Deep learning algorithms 

to strive for the replication of novel artificial or synthetic data 

by initially comprehending the pattern derived from appropriate 

training data [8]. 

The Generative Adversarial Network (GAN) is a widely 

utilized form of data augmentation model that is employed 

for the creation of time series data as well as visualizations [10]. 

Various fields such as health care [22], stock market predictions 

[25], image segmentation [2], text classification [5] etc., 

have incorporated the utilisation of GANs. 

In this research, we investigate how GANs can be used 

to generate authentic ECG and PCG signals from scratch. 

In Section II, we present an overview of relevant published 

materials. GAN, Least Squares GAN, and Cycle GAN 

architectures, as well as classification with VGGNet, are discussed 

in Section III; evaluation criteria are outlined in Section IV; 

and the simulated results and datasets are discussed in Section V. 

1. Literature review 

The conventional methods for the classification of electro-

cardiogram (ECG) and phonocardiogram (PCG) signals rely 

mostly on the use of traditional supervised machine learning 

approaches. Using a linear Support Vector Machine (SVM) [5], 

PCG signals were successfully classified. Numerous studies have 

used the SVM technique to classify electrocardiogram (ECG) 

readings [12].  

These methods have not been able to scale adequately 

to incorporate ECGs from a large variety of individuals, 

even if we disregard the time and work necessary. Each patient's 

ECG signal will have its own unique dynamics and morphology. 

After much success in machine learning, researchers have started 

to take notice of the convolutional neural network's (CNN) 

potential for ECG and PCG categorization [15]. By coordinating 

the acquisition of ECG and phonocardiogram signals, Jan Nedoma 

et al. were able to make direct comparisons between 

the two methods of monitoring heart rate [19]. ECG signals 

in the time-frequency domain can be decomposed using wavelet 

techniques. Popular methods for feature extraction include 

principal component analysis and the hidden Markov model 

to name a few [14].  

There are a number of deep learning methods that show 

promise for cardiovascular diseases classification and detection, 

but they need a lot of training instances to be truly effective. 

Due to the rarity of potentially lethal arrhythmias, there is a lack 

of data for training which is required for deep algorithms. 

There is a scarcity of deep PCG and ECG signals for rare diseases 

that are acceptable for clinical application because of the extensive 

heartbeat categorization challenge. To address this problem, 

we train deep learning models with simulated PCG and ECG 

signals depicting a variety of arrhythmias. 

As a result, the need for medical image augmentation evolved. 

Basic data augmentation techniques encompass flipping, snipping, 

and introducing noise. In addition to these techniques, some 

other basic data augmentation techniques such as spatial inversion 

[11], time-spatial inversion [6], baseline wandering [20] 

are also applied to ECG signals. However, when it comes 

to the management of complex data such as medical imaging, 

these basic techniques are inadequate. The variational autoencoder 

(VAE) [20] is a deep model that has received less attention 

compared to other more widely adopted techniques. Nevertheless, 

a prominent concern revolves around the recurrent occurrence 

of hazy and indistinct output images. 

2. Generative Adversarial Networks 

In 2014, a group of researchers or academicians led by Ian 

Goodfellow [8] proposed the concept of GANs. Generative 

models, which include GANs, are a broad category. Therefore, 

GANs are based on the concept of zero-sum games, in which each 

player intentionally strives to maximise his or her own advantage 

at the expense of everyone else. The results of the GAN are 

a joint effort of a Generator and a Discriminator neural network. 

The Generator's goal is to perfect its ability to mislead 

the Discriminator with artificial distributions, whereas 

the Discriminator's goal is to perfect its capacity to recognise 

and reject fake distributions generated by the Generator. 

The figure 1 gives the architecture block diagram of GAN. 

The GAN's effectiveness as a deep generative model can 

be attributed to its two main components, the generator 

and the discriminator. The generator (G) takes in a latent vector 

(z) with a Gaussian distribution and produces fake images or data. 

A discriminator trained on both forms of data x will produce 

an answer as to whether the created data is fake or real in its 

output (D). The goal function of a GAN is written out in the form 

of a min-max optimisation, as shown in equation 1. 

In this study, we developed an LSGAN and Cycle GAN 

capable of producing realistic ECG and PCG signals, as well 

as a discriminator that can distinguish between the real and fake. 

Next these signals are given to a VGG-Net classifier to classify 

arrhythmias. 

 𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝑉(𝐷, 𝐺) = 

 = 𝐸𝑍 log (1 − 𝐷(𝐺(𝑧))) + 𝐸𝑥 log(𝐷(𝑥)) (1) 

 

Fig. 1. Architecture of GAN 

2.1. Cycle GAN 

Cycle GANs can autonomously learn to translate between 

two visual inputs [27] when given just those two sets. Together, 

the two GANs in a Cycle GAN undergo training at the same time. 

The objective here is to preserve the constancy of the cycle 

at all times. In addition to the pair loss terms inherent in a GAN, 

a cycle loss term is included. It is necessary to optimise both GAN 

pairings in addition to the cycle loss term. The concept of "cycle 

loss" is visualised here. Take the task of teaching the Cycle GAN 

to convert summer (X) to winter (Y) landscapes as an example. 

To convert data from domain X to domain Y, we first train 

the initial generator, designated by F, to produce a winter image 

from a summer input image. DY is used to tell Y apart from 

the real thing. The second GAN pair does the opposite operation, 

converting X to Y and differentiating Y from X. While learning, 

the second GAN could invert Y into X. Therefore, while switching 

from summer to winter and back again, the images must remain 

visually consistent. This is shown in the figure 3 [27]. 

2.2. Least square GANs 

GANs where the least-squares loss is utilised as a discri-

minator are called LSGANs [18]. Lowering the LSGAN's 

goal function has the same effect as minimising the Pearson 2 

divergence. There are two benefits of LSGANs over classic 

GANs. First, unlike regular GANs, LSGANs can generate images 

of higher quality. Second, when it comes to teaching and learning, 

LSGANs are more reliable. 
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2.3. Arrhythmia classification 

For the arrythmia classification, VGGNet architecture is used 

in this research. The VGGNet stands for Visual Geometry Group 

Network [21]. It was introduced in 2014, which was two years 

after AlexNet. The primary objective behind the development 

of this model was to investigate the influence that depth has 

on the level of precision achieved by picture classification training 

models. The model's speed and accuracy both saw substantial 

boosts after VGG was introduced. As the number of layers 

with smaller kernels was utilised, non-linearity improved, which 

is a desirable property in deep learning. 

The VGG-Net is divided into VGG-16 and VGG-19 

architectures. The VGG-16 network is a deep convolutional model 

that was trained using data from ImageNet. The major data set 

classification in this paper was accomplished using the VGG-16 

model. Pooling layers, Convolution layers, and fully linked layers 

make up the network model. Figure4 depicts the network diagram 

of VGG-16's structural design. The VGG-16 architecture is shown 

in the figure 4. 

The "16" in VGG stands for the number of layers in the deep 

neural network used by the VGGNet architecture. The VGG-16 

architecture consists of 13 convolutional layers and three fully 

connected layers. The convolutional layer generates a feature 

map by applying a kernel matrix to the input matrix. By spreading 

the Kernel matrix over the input matrix, we are able to carry 

out a mathematical operation known as convolution. 

The feature map is the accumulated output of element-by-element 

matrix multiplication at each node. The output feature map 

of the convolutional layer remembers the exact position 

of the features in the input, which can be problematic. This means 

that the feature map will vary drastically if the input image 

is trimmed, or altered in any other way. As a solution, we employ 

down sampling in our convolutional layers. The ability to down 

sample can be achieved by introducing a pooling layer after 

a non-linearity layer. When the input is translated slightly, 

the representation becomes roughly invariant thanks to pooling. 

In a convolutional neural network, the final Fully Connected 

Layer receives the output of the final Pooling Layer. There may 

be one, two, or all of these layers depending on the situation. 

To be fully connected, all of the first-layer nodes must have links 

to all of the second-layer nodes. 

 

Fig. 2. Architecture of Cycle GAN 

 

Fig. 3. Summer to winter [27] 

 

Fig. 4. Network Architecture of VGG-16 

3. Evaluation metrics 

Peak signal to noise ratio 

The peak signal-to-noise ratio (PSNR) is the maximum pixel 

intensity divided by the distortion power, and it is calculated using 

the mean square error. Like MSE, the PSNR metric requires little 

effort to compute but may not correlate well with subjective 

evaluations of quality. 

Structural similarity index 

One metric for evaluating the quality of digital still 

photographs is the SSIM index. To calculate the SSIM of two 

images, x and y, we use the following formula. The Structural 

Similarity Index Approach is an interpretation-based framework. 

This approach sees image degradation as a shift in how 

we interpret the underlying structural details of an image. It works 

in tandem with other perceptual facts that are as crucial, such 

as the masking of brightness and contrast. 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝑐1
2 + 𝜇𝑥

2 + 𝜇𝑦
2)(𝑐2

2 + 𝜎𝑥
2 + 𝜎𝑦

2)
 

𝜎𝑦
2 – variance of y,  

𝜎𝑥
2 – variance of x,  

𝜎𝑥𝑦 – covariance of y and x,  

µ𝑥 – mean of x,  

µ𝑦 – mean of y. 

Cross correlation coefficient 

Cross-correlation assessment is a method of deducing 

properties of a signal from its correlation with another signal. 

Accuracy  

The degree of accuracy can be thought of as a representation 

of the probability that the values that were provided are accurate. 

A key measurement to take into account is the proportion 

of instances that the classifier correctly labelled. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

 

TP indicates True Positive, FP indicates False Positive, 

FN indicates False Negative, and TN indicates True Negative. 

Precision 

The proportion of actual positive results relative to the total 

number of expected results is a measure of precision. 

𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall  

It evaluates a model based on how effectively it can provide 

accurate predictions. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1 score 

It's a function that takes into account both accuracy and recall. 

It is the harmonic mean of recall and precision. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
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4. Results and discussion 

4.1. Datasets 

To evaluate the method's performance, we used two databases, 

PTB and MIT-BIH [9]. The PTB diagnostic database contains 

549 records, representing 290 individuals. Each record contains 

data from fifteen consecutive measurements of the same signal. 

One thousand samples per second of digital data are taken from 

each signal. There is a wide variety of data available, including 

that pertaining to heart failure, myocardial hypertrophy, 

intra-cardiac, healthy persons, and more. There are 25 recordings 

with junctional, supra-ventricular, and heart block arrhythmias, 

and 23 healthy recordings with sequential numbers between 

100 and 124 in the MIT-BIH database. 

The PASCAL Heart Sound Challenge [4] dataset, the Heart 

Sound and Murmur Library [13], and the PhysioNet CinC 

Challenge dataset [17] are only a few examples of openly 

accessible datasets for PCG recordings. 

Dataset 'A' and dataset 'B' are two subsets of the Pascal 

HSC database. Dataset 'A' was collected with the help 

of the iStethoscope Pro iPhone software, whereas dataset 'B' was 

compiled in a hospital setting with the help of the digital 

stethoscope. There is a total of 176 and 656, respectively, 

of auscultations in the two data sets. Both sets of data include 

recordings of regular heartbeats, as well as those with murmurs 

and additional systoles. The PhysioNet CinC database version 

2016 was also created for a competition. The dataset includes 

heart sounds from clinical as well as non-clinical environments. 

The 'normal,' 'uncertain,' and 'abnormal' sound categories are all 

part of the test. 

There is also the Heart sound and Murmur Library from 

the Michigan University Health Systems, which is a publicly 

available dataset containing many types of heart murmurs 

and sound, such as normal heart sounds, S1, single S2, split S2 

transient, and more. 

4.2. Simulation results 

The real and artificial ECG and PCG signals generated 

by LS GAN are displayed in figure 5 and figure 6, respectively 

whereas figure 7 shows real and artificial ECG and PCG signals 

generated using Cycle GAN. The similarity results between real 

and artificial (or Generated) signals are shown in the table 1 

whereas table 2 gives the arrhythmia classification results. 

 

  
Fig. 5. Real and fake (generated) ECG Signals using LSGAN 

  
Fig. 6. Real and Fake (Generated) PCG Signals using LS GAN 

  
Fig. 7. Real and Fake (Generated) ECG Signals using Cycle-GAN 
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Table 1. Similarity results between synthesised and Real ECG and PCG signals 

Method Signal MSE SSIM 

LSGAN ECG 0.0702 0.9705 

LSGAN PCG 0.0728 0.9702 

CycleGAN ECG 0.0651 0.9823 

CycleGAN PCG 0.0699 0.9805 

Table 2. Arrhythmia classification results 

Method Signal Precision Recall F1 Score 

LSGAN ECG 0.9002 0.8569 0.8780 

LSGAN PCG 0.8959 0.8412 0.8676 

CycleGAN ECG 0.9120 0.8952 0.9035 

CycleGAN PCG 0.9054 0.8897 0.8974 

5. Conclusion 

There are a number of constraints that could make it difficult 

to get extensive patient information. The synthesis of realistic data 

has emerged as an attractive new topic of research in healthcare, 

particularly medicine. This is mostly due to the fact that it enables 

supervised machine learning classifiers to be better trained 

on datasets. In this research, ECG and PCG data were created 

using Least Squares GAN and Cycle GAN. Furthur, using 

VGGNet, studies were conducted to classify arrhythmias 

for the synthesized ECG signals. The synthesized signals 

performed well and resembled the original signal and the obtained 

precision of 96.99%, recall of 97.81% and an F1 score of 97.22%. 
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