PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Polymer Reinforced DNAN/RDX Energetic Composites: Interfacial Interactions and Mechanical Properties

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
2,4-Dinitroanisole (DNAN) has excellent properties as a replacement for 1,3,5-trinitrotoluene (TNT) in melt-cast explosives, and the polymeric modifier used is critical to the mechanical modification of the DNAN/RDX energetic composite. In our research, the typical polymeric modifier acrolein-pentaerythritol resin (APER) was successfully added experimentally to the DNAN/RDX system, and the effects of interfacial interactions on the mechanical properties of these polymers in reinforcing the DNAN/RDX energetic composites were investigated by molecular dynamics simulations, scanning electron microscopy (SEM) and mechanical testing. The results showed that strong attractive interactions exist between the polymer and the explosives, wherein van der Waals forces were found to play the main role. The morphological micro-images also showed tight binding between the polymer/explosive interfaces, which supported the calculated strong interfacial interactions. The mechanical tests confirmed that adding the polymers can obviously reinforce the mechanical strength and toughness of DNAN/RDX systems. The above observations revealed that the cooperative effects of the APER polymer can help to reinforce the interfacial interactions and mechanical properties of DNAN/RDX composites, which is of importance in the formulation and mechanical evaluation of advanced energetic composites.
Rocznik
Strony
726--741
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, China
Bibliografia
  • [1] Fedoroff, B. T. Dictionary of Explosives. Ammunition and Weapons. Picatinny Arsenal, Technical Report 2510, 1958.
  • [2] Niles, J.; Doll, D. Development of a Practical Reduced Sensitivity Composition B Replacement. 32th Int. Annu. Conf. ICT, Karlsruhe, Germany 2001.
  • [3] Patel, C. Common Low-cost IM Explosive Program, Development of Next Generation Insensitive Munitions: A Success Story. Picatinny Arsenal, NJ, DADCTR-2010-225, 2011.
  • [4] Fung, V.; Schreiber, B. Large Scale Manufacturing of Insensitive Explosive IMX-104 at Holston Army Ammunition Plant. 2012 Insensitive Munitions and Energetic Material Technology Symposium, Las Vegas, May 14-17, 2012.
  • [5] Headrick, S.; Price, D.; LeClaire, E. Development of an Efficient Alternative Process for DNAN Production. 2012 Insensitive Munitions and Energetic Material Technology Symposium, Las Vegas, May 14-17, 2012.
  • [6] Fung, V.; Schreiber, B.; Patel, C.; Samuels, P.; Vinh, P.; Zhao, X. L. Process Improvement and Optimization of Insensitive Explosive IMX-101. 2012 Insensitive Munitions and Energetic Material Technology Symposium, Las Vegas, May 14-17, 2012.
  • [7] Willson, A. Manufacturing of Explosive Ingredients and Compositions for the IM M795 Artillery Ammunition. 2007 Insensitive Munitions and Energetic Materials Symposium, Miami, Florida, Oct. 15-18, 2007.
  • [8] Roos, B. The Characterization of IM Explosive Candidates for TNT Replacement. 2007 Insensitive Munitions and Energetic Materials Symposium, Miami, Florida, Oct. 15-18, 2007.
  • [9] Singh, S. The Application of New IM Explosive Candidates in the M795 Projectile. 2007 Insensitive Munitions and Energetic Materials Symposium, Miami, Florida, Oct. 15-18, 2007.
  • [10] Hunter, D. Comparison of Blast Performance of the IM Explosive PAX-28 Variations. 2007 Insensitive Munitions and Energetic Materials Symposium, Miami, Florida, Oct. 15-18, 2007.
  • [11] Davies, P. J.; Provatas, A. Characterization of 2,4-Dinitroanisole: an Ingredient for Use in Low Sensitivity Melt Cast Formulations. Defence Science and Technology Organisation, Weapons System Division, Australia, DSTO-TR-1904, 2006.
  • [12] Moore, D. W.; Burkardt, L. A.; McEwan, W. S. Viscosity and Density of the Liquid System TNT-Picric Acid and Four Related Pure Materials. J. Chem. Phys. 1956, 25: 1235.
  • [13] Qian, W., Chen, X. Z., Zhou, Y. The Interfacial Interaction and Diffusion Mechanism of Molten DNAN on High-Energetic Crystals: a Theoretical Investigation. 47th Int. Annu. Conf. ICT, Karlsruhe, Germany 2016.
  • [14] Zhang, G. Q.; Dong, H. S. Review on Melt-Castable Explosives Based on 2,4-Dinitroanisole. (in Chinese) Chin. J. Energ. Mater. 2010, 18: 54-60.
  • [15] Ma, Q.; Shu, Y. J.; Luo, G.; Chen, L.; Zheng, B. H.; Li, H. R. Toughening and Elasticizing Route of TNT Based Melt-Cast Explosives. (in Chinese) Chin. J. Energ. Mater. 2012, 20: 618-629.
  • [16] Qian, W.; Zhang, C. Y.; Xiong, Y.; Zong, H. H.; Zhang, W. B.; Shu, Y. J. Thermal Expansion of Explosive Molecular Crystal: Anisotropy and Molecular Stacking. Cent. Eur. J. Energ. Mater. 2014, 11(1): 569-580.
  • [17] Qian, W.; Shu, Y. J.; Li, H. R.; Ma, Q. The Effect of HNS on the Reinforcement of TNT Crystal: a Molecular Simulation Study. J. Mol. Model. 2014, 20: 2461.
  • [18] Zhao, K.; Wang, H.; Wang, W.; Yang, F.; Liu, R.; Zhu, Y. Analysis of the Mechanical Properties of DNAN. (in Chinese) Chin. J. Explo. Prop. 2016, 39(4): 68-72.
  • [19] Qian, W.; Shu, Y. J.; Li, H. R.; Ma, Q.; Wang, S. M.; Chen, X. Z. The Reinforcement of the TNT System by Newly-designed GAP-based Polyurethane-Urea: a Molecular Simulation Investigation. Cent. Eur. J. Energ. Mater. 2016, 13(2): 411-426.
  • [20] Guest, H. R.; Adams, J. T.; Kiff, B. W. Modified Acrolein-Pentaerythritol Resins. Patent US 59681456A, 1959.
  • [21] Guest, H. R.; Adams, J. T.; Kiff, B. W. Acrolein-Pentaerythritol Resins and Modifier Therefore. Patent US 59682356A, 1959.
  • [22] Cai, J. L.; Gao, D. P.; Zheng, S. S.; Chi, Y. Curing Kinetics and Rheology Property of Acrolein-Pentaerythritol Resin System. (in Chinese) Chin. J. Energ. Mater. 2015, 23(6): 558-562.
  • [23] Nyburg, S. C.; Faerman, C. H.; Prasad, L.; Palleros, D.; Nudelman, N. Structures of 2,4-Dinitroanisole and 2,6-Dinitroanisole. Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 1987, 43: 686-689.
  • [24] Choi, C. S.; Prince, E. The Crystal Structure of Cyclotrimethylenetrinitramine. Acta Crystallogr. 1972, 28(9): 2857-2862.
  • [25] Accelrys Software Inc. Materials Studio Release Notes, Release 6.1, San Diego 2012.
  • [26] Sun, H. COMPASS: An ab Initio Forcefield Optimized for Condensed-Phase Applications − Overview with Details on Alkane and Benzene Compounds. J. Phys. Chem. B 1998, 102: 7338.
  • [27] McQuaid, M. J.; Sun, H.; Rigby, D. Development and Validation of COMPASS Force Field Parameters for Molecules with Aliphatic Azide Chains. J. Comp. Chem. 2004, 25(1): 61-71.
  • [28] Bravais, A. Etudes Crystallographiques (the 2011 ed., Nabu Press), Academie des Sciences, Paris, 1913; ISBN 1246427524.
  • [29] Friedel, G. Studies on the Law of Bravais. (in French) Bull. Soc. Fr. Mineral. 1907, 30: 326-455.
  • [30] Donnay, J. D. H.; Harker, D. A New Law of Crystal Morphology Extending the Law of Bravais. Am. Mineral 1937, 22: 446-467.
  • [31] Verlet, L. Computer Experiments on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Phys. Rev. 1967, 159: 98-103.
  • [32] Ewald, P. P. The Calculation of Optical and Electrostatic Lattice Potentials. (in German) Ann. Phys. (Leipzig) 1921, 64: 253.
  • [33] Karasawa, N.; Goddard, W. A. Acceleration of Convergence for Lattice Sums. J. Phys. Chem. 1989, 93: 7320-7327.
  • [34] Andersen, H. C. Molecular Dynamics Simulations at Constant Pressure and/or Temperature. J. Phys. Chem. 1980, 72: 2384.
  • [35] Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. Molecular Dynamics with Coupling to an External Bath. J. Chem. Phys. 1984, 81: 3684-3690.
  • [36] Qiu, L.; Xiao, H. M. Molecular Dynamics Study of Binding Energies, Mechanical Properties, and Detonation Performances of Bicyclo-HMX-based PBXs. J. Hazard. Mater. 2009, 164: 329-336.
  • [37] Ma, X. F.; Xiao, J. J.; Huang, H.; Ju, X. H.; Li, J. S.; Xiao, H. M. Simulative Calculation of Mechanical Property, Binding Energy and Detonation Property of TATB/Fluorine-Polymer PBX. Chin. J. Chem. 2006, 24: 473-477.
  • [38] Zhu, W.; Xiao, J. J.; Zhu, W. H.; Xiao, H. M. Molecular Dynamics Simulations of RDX and RDX-based Plastic Bonded Explosives. J. Hazard. Mater. 2009, 164: 1082-1088.
  • [39] Explosive Test Method. National Military Standard of China, GJB/772A-97, 1997.
  • [40] Ma, Q.; Wang, P. S.; Luo, G.; Wen, M. P.; Gao, D. Y.; Zheng, B. H.; Shu, Y. J. Microstructure, Mechanical and Detonation Properties of Elastomeric Micro/ Ultrafine-Rubber Modified TNT-based Molten Energetic Composites. Cent. Eur. J. Energ. Mater. 2015, 12(4): 723-743.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dda7cf39-bfef-4f26-b2c1-c630f64c5008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.