PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The foraminiferal record in the Holocene evolution of the Mecklenburg Bay (south-western Baltic Sea)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Foraminiferal assemblages were analyzed in a 620-cm long core retrieved from the central part of the Mecklenburg Bay (MB, south-western Baltic Sea) to aid in the reconstruction of environmental changes occurring in the area during the Holocene and to complement a set of previously investigated palaeoenvironmental proxies. A total of five foraminifera-based stratigraphic units were identified, including an initial 80-cm thick layer devoid of foraminifera. The next two units featured an increasing abundance of the foraminiferal assemblage dominated by the calcareous Ammonia group species. Nearly all the calcareous foraminifera found in the core were decalcified. Following the maximum abundance within the 470–410 cm layer, the foraminiferal abundance declined sharply and the assemblage’s dominance structure changed to domination of the agglutinated foraminiferal species, Eggerelloides scaber, which continued up to the top of the core and marked a pronounced shift in environmental conditions (shallower depth, lower salinity, more dynamic sedimentation conditions). The foraminifera-based stratigraphy of the core proved to be complementary to that emerging from previous analyses of diatoms and sediment geochemistry.
Rocznik
Strony
169--183
Opis fizyczny
Bibliogr. 55 poz.
Twórcy
  • Institute of Geoecology and Geoinformation, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University in Poznań, ul. Bogumiła Krygowskiego 10, 61-680 Poznań, Poland
  • Institute of Marine and Environmental Sciences, University of Szczecin, ul. A. Mickiewicza 16A, 70-383 Szczecin, Poland
Bibliografia
  • [1]. Alve, E. & Murray, J.W. (1999). Marginal marine environments of the Skagerrak and Kattegat: a baseline study of living (stained) benthic foraminiferal ecology. Palaeogeography, Palaeoclimatology, Palaeoecology 146: 171-193.
  • [2]. Alve, E. & Nagy, J. (1986). Estuarine foraminiferal distribution in Sandebukta, a branch of the Oslo Fjord. Journal of Foraminiferal Research 16: 261-284.
  • [3]. Andrén, T., Björck, S., Andrén, E., Conley, D., Zillen, L. et al. (2011). The Development of the Baltic Sea Basin During the Last 130 ka. In J. Harff, S. Björck & P. Hoth (Eds.), The Baltic Sea Basin (pp. 75-97). Springer: Berlin.
  • [4]. Bennike, O. & Jensen, J. B. (1998). Late- and postglacial shore level changes in the south-western Baltic Sea. Bulletin of the Geological Society of Denmark 45: 27-38.
  • [5]. Björck, S. (2008). The late Quaternary development of the Baltic Sea basin. In H. von Storch (Ed.), Assessment of climate change in the Baltic Sea basin (pp. 398-407). Springer Verlag: Berlin Heidelberg.
  • [6]. Björck, S., Andrén, T. & Jensen, J.B. (2008). An attempt to resolve the partly conflicting data and ideas on the Ancylus-Littorina transition. Polish Geological Institute Special Papers 23: 21-26.
  • [7]. Binczewska, A., Moros, M., Polovodova Asteman, I., Sławińska, J. & Bąk, M. (2018). Changes in the inflow of saline water into the Bornholm Basin (SW Baltic Sea) during the past 7100 years - evidence from benthic foraminifera record. Boreas 47: 297-310.
  • [8]. Brodniewicz, I. (1965). Recent and some holocene foraminifera of the southern Baltic Sea. Acta Palaentologica Polonica 10: 131-236.
  • [9]. Buzas-Stephens, P. (2005). Population dynamics and dissolution of foraminifera in Nueces Bay, Texas. Journal of Foraminiferal Research 35: 248-258.
  • [10]. Buzas-Stephens, P., Buzas, M., Price, J. & Chandra, H.C. (2018). Benthic Superheroes: Living Foraminifera from Three Bays in the Mission-Aransas National Estuarine Research Reserve, USA. Estuaries and Coasts 41: 2368-2377. DOI: 10.1007/s12237-018-0425-4.
  • [11]. Christiansen, C., Kunzendorf, H., Laima, M.H.C., Lund-Hansen, L.C. & Pedersen, A.M. (1996). Recent changes in environmental conditions in the south-western Kattegat, Scandinavia. Norges Geologiske Undersøkelse Bulletin 430: 137-144.
  • [12]. Frenzel, P., Tech, T. & Bartholdy, J. (2005). Checklist and annotated bibliography of Recent Foraminiferida from the German Baltic Sea coast. Studia Geologica Polonica 124: 67-86.
  • [13]. Gogina, M., Glockzin, M. & Zettler, M.L. (2010). Distribution of benthic macrofaunal communities in the western Baltic Sea with regard to near-bottom environmental parameters. 1. Causal analysis. Journal of Marine Systems 79: 112-123.
  • [14]. González, I. & Déjean, S. (2009). CCA: Canonical correlation analysis. Available at: https://cran.r-project.org/web/packages/CCA.
  • [15]. González, I., Dèjean, S., Martin, P.G.P. & Baccini, A. (2008). CCA: An R Package to Extend Canonical Correlation Analysis. Journal of Statistical Software 23: 128-129. DOI: 10.1002/wics.10.
  • [16]. Haynert, K., Schönfeld, J., Polovodova Asteman, I. & Thomsen, J. (2012). The benthic foraminiferal community in a naturally CO2-rich coastal habitat of the southwestern Baltic Sea. Biogeosciences 9: 4421-4440.
  • [17]. Hayward, B.W., Holzmann, M., Grenfell, H.R., Pawlowski, J. & Triggs, C.M. (2004). Morphological distinction of molecular types in Ammonia - towards a taxonomic revision of the world’s most commonly misidentified foraminifera. Marine Micropaleontology 50: 237-271.
  • [18]. Heaton, T.J., Köhler, P., Butzin, M., Bard, E., Reimer, R.W. et al. (2020). Marine20 - The Marine Radiocarbon Age Calibration Curve (0-55,000 cal BP). Radiocarbon 62: 237-271.
  • [19]. Heinrich, C., Anders, S., Schwarzer, K. (2018). Late Pleistocene and early Holocene drainage events in the eastern Fehmarn Belt and Mecklenburg Bight, SW Baltic Sea. Boreas 46: 754-776.
  • [20]. HELCOM (2013). Climate change in the Baltic Sea Area: HELCOM thematic assessment in 2013. Baltic Sea Environment Proceedings 137.
  • [21]. Hermelin, J.O.R. (1983). Biogeographic patterns of modern Reophax dentaliniformis Brady (arenaceous benthic foraminifera) from the Baltic Sea. Journal of Foraminiferal Research 13: 155-162.
  • [22]. Hermelin, J.O.R. (1987). Distribution of Holocene benthic foraminifera in the Baltic Sea. Journal of Foraminiferal Research 17: 62-73.
  • [23]. Hofmann, W. & Winn, K. (2000). The Littorina Transgression in the Western Baltic Sea as Indicated by Subfossil Chironomidae (Diptera) and Cladocera (Crustacea). International Review of Hydrobiology 85: 267-291.
  • [24]. Iglikowska, A. & Pawłowska, J. (2015). The Adaptations of the Foraminifera and Ostracoda to Fresh Water Colonisation. In T. Zieliński, M. Węsławski & K. Kuliński (Eds.), Impact of Climate Changes on Marine Environments (pp. 91-113) Springer: Dordrecht.
  • [25]. Janßen, H., Schröder, T., Zettler, M.L. & Pollehne. F. (2015). Offshore wind farms in the southwestern Baltic Sea: A model study of regional impacts on oxygen conditions. Journal of Sea Research 95: 248-257.
  • [26]. Kortekaas, M., Murray, A., Sandgren, P. & Björck, S. (2007). OSL chronology for a sediment core from the southern Baltic Sea: A continuous sedimentation record since deglaciation. Quaternary Geochronology 2: 95-101.
  • [27]. Kostecki, R., Janczak-Kostecka, B., Endler, M. & Moros, M. (2015). The evolution of the Mecklenburg Bay environment in the Holocene in the light of multidisciplinary investigations of the sediment cores. Quaternary International 386: 226-238.
  • [28]. Leckie, R.M. & Olson, H.C. (2003). Foraminifera as Proxies for Sea-level Change on Siliciclastic Margins. In H.C. Olson & R.M. Leckie (Eds.) Micropaleontologic Proxies for Sea-Level Change and Stratigraphic Discontinuities (pp. 5-19). SEPM (Society for Sedimentary Geology) Special Publication 75.
  • [29]. Leipe, T., Kersen, M., Heise, S., Pohl, C., Witt, G. et al. (2005). Ecotoxicity assessment of natural attenuation effects at ahistorical dumping site in the western Baltic Sea. Marine Pollution Bulletin 50: 446-459.
  • [30]. Leipe, T., Tauber, F., Vallius, H., Virtasalo, J., Uścinowicz, S. et al. (2011). Particulate organic carbon (POC) in surface sediments of the Baltic Sea. Geo-Marine Letters 31: 175-188.
  • [31]. Levin, L.A. (2003). Oxygen minimum zone benthos: Adaptation and community response to hypoxia. Oceanography and Marine Biology Annual Review 41: 1-45.
  • [32]. Loeblich, A.R. Jr & Tappan, H. (1988). Foraminiferal Genera and Their Classification. 970 pp. Springer Verlag, New York.
  • [33]. Matthäus, W. (1984). Zur mittleren jahreszeitlichen Veränderung von Temperatur und Salzgehalt in der Mecklenburger Bucht. Beiträge für Meereskunde 50: 9-23.
  • [34]. Menzel, U. (2009). CCP: Significance Tests for Canonical Correlation Analysis (CCA). Available at: https://cran.r-project.org/web/packages/CCP.
  • [35]. Murray, J.W. (1991). Ecology and Palaeoecology of Benthic Foraminifera. 397 pp. John Wiley and Sons, Essex, New York.
  • [36]. Murray, J.W. (2002). Introduction to Benthic Foraminifera. In S. Haslett (Ed.) Quaternary Environmental Micropalaeontology (pp. 5-13). Arnold: London.
  • [37]. Murray, J.W. & Alve, E. (2011). The distribution of agglutinated foraminifera in European seas: Baseline data for the interpretation of fossil assemblages. Palaeontologia Electronica 14 (2) 14A: 41p. palaeo-electronica.org/2011_2/248/index.html.
  • [38]. Ojaveer, H., Jaanus, A., MacKenzie, B.R., Martin, G., Olenin, S. et al. (2010). Status of Biodiversity in the Baltic Sea. PLoS ONE 5(9): e12467.
  • [39]. Polovodova, I., Nikulina, A., Schönfeld, J. & Dullo, W.-Ch. (2009). Recent benthic foraminifera in the Flensburg Fjord: distribution and response to environmental change. Journal of Micropaleontology 28: 131-142.
  • [40]. Powilleit, M., Kleine, J. & Leuchs, H. (2006). Impacts of experimental dredged material disposal on a shallow, sublittoral macrofauna community in Mecklenburg Bay (western Baltic Sea). Marine Pollution Bulletin 52: 386-396.
  • [41]. Reaves, C.M. (1986). Organic matter metabolizability and calcium carbonate dissolution in nearshore marine muds. Journal of Sedimentary Research 56: 486-494.
  • [42]. Reimer, P.J., Austin, W.E.N., Bard, E., Bayliss, A., Blackwell, P.G. et al. (2020). The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0-55 cal kBP). Radiocarbon 62: 725-757.
  • [43]. Rößler, D. (2006). Reconstruction of the Littorina Transgression in the Western Baltic Sea. Marine Science Reports 67, 105pp.
  • [44]. Rößler, D., Moros, M. & Lemke, W. (2011). The Littorina transgression in the southwestern Baltic Sea: new insights based on proxy methods and radiocarbon dating of sediment cores. Boreas 40: 231-241.
  • [45]. Ruiz-Agudo, E., Putnis, C.V. & Putnis, A. (2010). Specific Effects of Background Ions on Magnesium Incorporation into Calcite. Revista de la Sociedad Espanola de Mineralogia 13: 187-188.
  • [46]. Seddon, A.W.R., Mackay, A.W., Baker, A.W., Birks, J.B., Breman, E. et al. (2014), Looking forward through the past: identification of 50 priority research questions in palaeoecology. Journal of Ecology 102: 256-267.
  • [47]. Siegel, H., Gerth, M., Heene, T., Ohde, T., Rüß, D. et al. (2009), Hydrography, currents and distribution of suspended matter during a dumping experiment in the western Baltic Sea at a site near Warnemünde. Journal of Marine Systems 75: 397-408.
  • [48]. Snoeijs-Leijonmalm, P. (2017). Patterns of biodiversity. In P. Snoeijs-Leijonmalm, H. Schubert & T. Radziejewska (Eds.), Biological Oceanography of the Baltic Sea (pp. 123-19) Springer: Dordrecht.
  • [49]. Snoeijs-Leijonmalm, P. & Andrén, E. (2017). Why is the Baltic Sea so special to live in? In P. Snoeijs-Leijonmalm, H. Schubert & T. Radziejewska (Eds.), Biological Oceanography of the Baltic Sea. (pp. 23-84) Springer: Dordrecht.
  • [50]. Stuiver, M. & Reimer, P.J. (1993). Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35: 215-230.
  • [51]. Valchev, B. (2003). On the potential of small benthic foraminifera as paleoecological indicators: recent advances. Annual University of Mining and Geology “St. Ivan Rilski” 46: 189-194.
  • [52]. Weckström, K., Lewis, J.P., Andrén, E., Ellegaard, M., Rasmussen, P. et al. (2017). Palaeoenvironmental History of the Baltic Sea: One of the Largest Brackish-Water Ecocystems in the World. In K. Weckström, K.M. Saunders, P.A. Gell & C.G. Skilbeck (Eds.) Applications of Paleoenvironmental Techniques in Estuarine Studies (pp 615-662). Springer: Dordrecht.
  • [53]. Witkowski, A., Broszinski, A., Bennike, O., Janczak-Kostecka, B., Bo Jensen, J. et al. (2005), Darss Sill as a biological border in the fossil record of the Baltic Sea: evidence from diatoms. Quaternary International 130: 97-109.
  • [54]. Zawisza, E. & Szeroczyńska, K. (2007). The development history of Wigry Lake as shown by subfossil Cladocera. Geochronometria 27: 67-74.
  • [55]. Zettler, M.L., Bönsch, R. & Gosselck, F. (2001). Distribution, abundance and some population characteristics of the ocean quahog, Arctica islandica (Linnaeus, 1767), in the Mecklenburg Bight (Baltic Sea). Journal of Shellfish Research 20: 161-169.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dda5eed6-e3cd-49a2-850b-73a40d995aed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.