PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bird modelling for simulation of bird strikes

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As proved in the conducted analyses, one of the factors, which, to a large degree, exerts a negative influence on flight safety, is a potential possibility of a collision of an aircraft with birds, in particular at an airfield or in its vicinity [12, 16]. Various parts of an aircraft are subjected to damage. It appears that damage to the engine as well as penetration of the windshield is extremely dangerous. The consequence of a bird falling into the engine can be engine shutting down [6, 21], whereas penetrating the canopy can cause a serious injury to the pilot, making him unable to continue piloting an aircraft. The analysis of the literature of the object of study [7] shows that the most damage of the windshield occurs in the category of aircraft and small helicopters, whose certification requirements were not specified in this case [1, 19]. It should be remembered that apart from the compulsory experimental strength tests, conducted in laboratory conditions in order to meet certification requirements, there exist various theoretical methods, which are realized based on proper mathematical modelling of the strike event [5, 10]. Therefore, due to lack of certification requirements for the category of normal aeroplanes and small helicopters and a high degree of damage, especially to the cockpit canopy, it seems justified to conduct simulation of the strike impact by means of proper software. In order to perform the modelling in question, it is necessary to select a proper bird model and a suitable simulation method, including appropriate software. Based on the available literature devoted to the subject, there are several methods of modelling a bird shape. Investigations exploit various geometrical figures in order to model the bird shape, the most common one being a cylinder, an ellipsoid and a cylinder with hexagonal endings [10]. The aim of this article is to analyse the selected methods in order to choose one of them for further research connected with the simulation of bird-strike events into a cockpit windshield of selected aircraft.
Słowa kluczowe
Twórcy
autor
  • Polish Air Force Academy Dywizjonu 303 Street 35, 08-521 Deblin, Poland tel.: +48 81 5517423, fax: +48 81 5517417
Bibliografia
  • [1] Adamski, M., Masłowski, A., On civil air task and e-training problems of UAV applications, Zeszyty Naukowe AMW, 185A, pp. 7-18, 2011.
  • [2] Anghileri, M, Castelletti, L. M. L, Mazza, V., Birdstrike: Approaches to the analysis of impacts with penetration, in: Alves, M., Jones, N., ed., Impact Loading of Lightweight Structures, pp. 63-74, WIT Press, Southampton 2005.
  • [3] Anghileri, M, Sala, G., Theoretical assessment, numerical simulation and comparison with tests of birdstrike on deformable structures, Proceedings of the 20th ICAS Congress, pp. 665-674, Sorrento, Italy 1996.
  • [4] Barber, J. P., Taylor, H. R., Wilbeck, J. S., Characterization of bird impacts on a rigid plate, Technical Report AFFDL-TR-75-5, Air Force Flight Dynamics Laboratory, 1975.
  • [5] Boguszewicz P., Sala, S., Bird strike, czyli zderzenie z ptakiem, Instytut Lotnictwa, Warszawa 2011.
  • [6] Ćwiklak, J, Jafernik, H., Bezpieczeństwo lotów w aspekcie kolizji statków powietrznych z ptakami zaistniałych w lotnictwie SZ RP, XLIII Zimowa Szkoła Niezawodności, Szczyrk 2015.
  • [7] Dennis, L., Lyle, D., Bird strike damage & windshield bird strike, Final Report, EASA, 2009.
  • [8] Grzesik, N., Sobolewski, M., Project of on-board control system with air-task efficiency estimation subsystem based on fuzzy logic for unmanned combat aerial vehicle rockets, Aviation, Vol. 18, Iss. 1, pp. 9-12, 2014.
  • [9] Gong, Y. N., Xu, S. Q., Bird impact analysis of aircraft windshield transparency, Chin. J. Aeronaut. Vol. 5 (2), pp. 106-112, 1992.
  • [10] Heimbs, S., Computational methods for Bird strike simulations: a review, Computers and Structures, Vol. 89, pp. 2093-2112, 2011.
  • [11] Kari, S., Gabrys, J., Lincks, D., Birdstrike analysis of radome and wing leading edge using LS-DYNA, Proceedings of the 5th International LS-DYNA Users Conference, Southfield, MI 1998.
  • [12] Manual on the ICAO Bird Strike information system (IBIS) Doc. 9332.
  • [13] Meguid, S. A., Mao, R. H., Ng, T. Y., FE analysis of geometry effects of an artificial bird striking an aeroengine fan blade, Int. J. Impact Eng., Vol. 35 (6), pp. 487-498, 2008.
  • [14] McCarty, R. E., Computer analysis of bird-resistant aircraft transparencies, Proceedings of
  • the 17th Annual SAFE Symposium, pp. 93-97, Las Vegas, NV 1979. [15] Mao, R. H., Meguid, S. A., Ng. T. Y., Transient three dimensional finite element analysis of a bird striking a fan blade, Int. J. Mech. Mater. Des., Vol. 4 (1), p. 79, 2008.
  • [16] Nizampatnam, L. S., Models and methods for bird strike load predictions, PhD thesis, Wichita State University, 2007.
  • [17] McCallum, S. C., Constantinou, C., The Influence of bird-shape in bird-strike analysis, Proceedings of the 5th European LS-DYNA Users Conference, Birmingham, UK 2005.
  • [18] McCarthy, M. A., Xiao, J. R., McCarthy, C. T., Kamoulakos, A., Ramos, J., Gallard,J. P., et al., Modeling of bird strike on an aircraft wing leading edge made from fiber metal laminates – part 2: Modeling of impact with SPH bird model, Appl. Compos. Mater. Vol. 11 (5), p. 317, 2004.
  • [19] Rozporządzenie MTBiGM z dnia 7 sierpnia 2013 r. w sprawie klasyfikacji statków powietrznych, DU poz. 1032, Warszawa 2013.
  • [20] Starke, P., Lemmen, G., Drechsler, K., Anwendung von FE-Simulationsmethoden bei Vogel-schlag, Deutscher Luft- und Raumfahrtkongress, Stuttgart 2002.
  • [21] Szczepanik, R., Szymczak, J., Colisions of military aircraft with birds in the airfield airspace in Poland, Air Force Institute of Technology, International Bird Strike Committee 26th Meeting Proceedings in Warsaw, Poland 2003.
  • [22] Wilbeck, J. S., Impact behavior of low strength projectiles, Technical Report AFML-TR-77-134, Wright-Patterson Air Force Base, 1978.
  • [23] Yang, J., Cai, X., Wu, C., Experimental and FEM study of windshield subjected to high speed bird impact, Acta Mech. Sinica, Vol. 19 (6), pp. 543-550, 2003.
  • [24] Zbrowski, A., Kolizje statków powietrznych z ptakami rosnącym zagrożeniem transportu
  • lotniczego, Technika i Technologia, BiTP, Vol. 36, Iss. 4, p. 131-140, 2014. [25] Zhu, S., Tong, M., Study on bird shape sensitivity to dynamic response of bird strike on aircraft windshield, Astronaut., Vol. 40 (4), pp. 551-555, 2008.
  • [26] Zhu, S., Tong, M., Wang, Y., Dynamic analysis of bird impact on aircraft windshield and Bird Shape Sensitivity Study, Proceedings of the First International Conference on Modeling and Simulation, Nanjing, China 2008.
  • [27] Zhu, S., Tong, M., Wang, Y., Experiment and numerical simulation of a full-scale aircraft windshield subjected to bird impact, Proceedings of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Palm Springs, CA 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dda117b4-9ac3-4b47-8d37-874082aafcb6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.