PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of plant Communities and Ecological Parameters on Soil Organic Carbon Stocks in the Mamora Forest, Morocco

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Several studies on the assessment of soil organic carbon (SOC) stocks have been carried out at the global level. However, reliable information on SOC stocks is not readily available at the regional level. In addition, very few studies have assessed the factors responsible for the variation of SOC stocks, in particular the effect of plant communities. For this purpose, the main objective was to analyze the effects of three plant communities and ecological parameters on the SOC stock in the Mamora forest. Specifically, the authors looked to examine the relationships between SOC stock and plant communities and to define the main parameters that directly influence SOC stock. Ten soil profiles with three replications were sampled at each plant community, from which SOC stock was determined. To assess the effect of plant communities on SOC stocks, phytosociological surveys were carried out according to the phytosociological stigma method developed by Braun-Blanquet. The results show that the SOC stocks in cork oak soils are characterized by high variability, with values ranging from 55 t•ha-1 to 95 t•ha-1. Indeed, the findings of this study showed that the SOC stocks fluctuated significantly with plant communities. In addition, SOC stocks were also affected by the interactions between plant communities, the amount of litter and the density of the cork oak stand. These outcomes of this study highlight the critical need to incorporate community-specific carbon values into future carbon sequestration modeling.
Rocznik
Strony
128--136
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
  • Laboratoire des Productions Végétale, Animales et Agro-industrie, Equipe de Botanique, Biotechnologie et Protection des Plantes, Faculté des Sciences, Université Ibn Tofail, Kénitra, Morocco
  • Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne, Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, Rabat 10000, Morocco
  • Laboratoire des Productions Végétale, Animales et Agro-industrie, Equipe de Botanique, Biotechnologie et Protection des Plantes, Faculté des Sciences, Université Ibn Tofail, Kénitra, Morocco
  • Independent Researcher, Rabat, Morocco
autor
  • Laboratoire des Productions Végétale, Animales et Agro-industrie, Equipe de Botanique, Biotechnologie et Protection des Plantes, Faculté des Sciences, Université Ibn Tofail, Kénitra, Morocco
Bibliografia
  • 1. Aafi, A. 2007. Etude de la diversité floristique de l’écosystème de Chêne-liège de la forêt de la Maamora, Thèse de Doctorat D’Etat Es-Sc Agronomiques, Institut Agronomique et Vétérinaire Hassan II, Rabat, Maroc, 190. (http://www.agrimaroc.org/index.php/Actes_IA VH2/thesis/view/30)
  • 2. Benabid, A. 2000. Flore et écosystème du Maroc: évaluation et préservation de la biodiversité, Ibis Press, Paris, 357.
  • 3. Boulmane, M., Makhloufi, M., Bouillet, J.P., SaintAndré, L., Satrani, B., Halim, M., El Antry, S. 2010. Estimation du stock de carbone organique dans la chênaie verte du Moyen Atlas marocain. Acta Bot. Gall., 157, 451. https://doi.org/10.1080/12538078.2010.10516222
  • 4. Braun-Blanquet, J. 1932. Plant Sociology: The Study of Plant Communities, McGraw-Hill, New York, English translation of Pflanzensoziologie by G.D. Fuller and H.S. Conard. https://doi.org/10.5962/bhl.title.7161
  • 5. Canedoli, C., Ferrè, C., Abu El Khair, D., Comolli, R., Liga, C., Mazzucchelli, F., Proietto, A., Rota, N., Colombo, G., Bassano, B., Viterbi, R., Padoa-Schioppa, E. 2020. Evaluation of ecosystem services in a protected mountain area: Soil organic carbon stock and biodiversity in alpine forests and grasslands, Ecosystem Services, 44, 101135. https://doi.org/10.1016/j.ecoser.2020.101135.
  • 6. Cao, J., Gong, Y., Adamowski, J.F., Deo, R.C., Zhu, G., Dong, X., Xin, C. 2019. Effects of stand age on carbon storage in dragon spruce forest ecosystems in the upper reaches of the Bailongjiang River basin, China. Sci Rep, 9, 3005. https://doi.org/10.1038/s41598-019-39626-z
  • 7. Chen, L.C., Liang, M.J., Wang, S.L. 2016. Carbon stock density in planted versus natural Pinus massoniana forests in sub-tropical China. Annals of Forest Science 73, 461–472. https://doi.org/10.1007/s13595-016-0539-4
  • 8. Conant, R.T., Paustian, K., Elliott, E.T. 2001. Grassland management and conversion into grassland: Effects on soil carbon. Ecological Applications, 11, 343-355. https://doi.org/10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2
  • 9. Dallahi, Y., El Aboudi, A., Aafi, A. 2016. The dynamics of natural regeneration of Tetraclinis articulata (Vahl) Masters in the Moroccan Central Plateau. Plant Sociol., 53, 41. http://www.scienzadellavegetazione.it/sisv/rivista/articoloCerca.do?idArticolo=609
  • 10. Duchaufour, P. 1970. Précis de pédologie, Paris: Masson, 481, https://www.persee.fr/doc/rural_0014-2182_1963_num_9_1_1060_t1_0117_0000_1
  • 11. Fry E.L., De Long J.R., Bardgett R.D. Plant Communities as Modulators of Soil Carbon Storage. Soil Carbon Storage, 2018. https://doi.org/10.1016/B978-0-12-812766-7.00002-0
  • 12. El Mderssa, M., Benjelloun, H., Zennouhi, O., Nassiri, L., Ibijbijen, J. 2019. Pedogenetic characterization and classification of forest soils in the Central Middle Atlas (Morocco). Eurasian J. Soil Sci., 8, 152. https://doi.org/10.18393/ejss.544740
  • 13. Blake G.R., Hartge K.H. 1986. Bulk Density. Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods, Am. Soc. Agron. Madison, 101, USA 1986.
  • 14. HCEFLCD. 2021. http://www.eauxetforets.gov.ma
  • 15. Hracherrass, A., Berkat, O., Ismaili, M., De Montard, F.X. 2013. Fixation symbiotique de l’azote chez Teline linifolia (L.) Webb & Berth : influences de la profondeur du sol et du recouvrement arborescent dans la subéraie de la Mâamora (Maroc). Cahiers Agricultures, 22(2), 124–132(1). https://doi.org/10.1684/agr.2013.0614
  • 16. Jackson, M.L 1973. Soil Chemical Analysis, Prentice Hall Grice, Englewood, New Delhi, India. (https://doi.org/10.1002/jpln.19590850311)
  • 17. Jandl, R., Lindner, M., Vesterdal, L., Bauwens, B., Baritz, R., Hagedorn, F., Byrne, K.A. 2007. How strongly can forest management influence soil carbon sequestration?, Geoderma, 137(3–4), 253–268. https://doi.org/10.1016/j.geoderma.2006.09.003
  • 18. Lee, S., Lee, S., Shin, J., Yim, J., Kang, J. 2020. Assessing the Carbon Storage of Soil and Litter from National Forest Inventory Data in South Korea. Forests, 11(12), 1318. MDPI AG. Retrieved from http://dx.doi.org/10.3390/f11121318
  • 19. Lefèvre, C., Rekik, F., Alcantara, V., Wiese, L. 2017. Soil organic carbon: the hidden potential, Food and Agriculture Organization of the United Nations (FAO).
  • 20. Na, M., Sun, X., Zhang, Y., Rousk, J. 2020. Higher stand densities can promote soil carbon storage after conversion of temperate mixed natural forests to larch plantations. Eur J Forest Res, 140, 373–386. https://doi.org/10.1007/s10342-020-01346-9
  • 21. Ono, K., Hiradate, S., Morita, S., Ohse, K., Hirai, K. 2011. Humification processes of needle litters forest floors in Japanese cedar (Cryptomeria japonica) and Hinoki cypress (Chamaecyparis obtusa) plantations in Japan. Plant Soil, 338, 171–181. https://doi.org/10.1007/s11104-010-0397-z
  • 22. Oubrahim, H., Boulmane, M., Bakker, M.R., Augusto, L., Halim, M. 2016. Carbon storage in degraded cork oak (Quercus suber) forests on flat lowlands in Morocco. iForest., 9, 169. https:// doi: 10.3832/ifor1364-008
  • 23. Peltoniemi, M., Mäkipää, R., Liski, J., Tamminen, P. 2004. Changes in soil carbon with stand age – an evaluation of a modelling method with empirical data. Global Change Biology, 10, 2078–2091. https://doi.org/10.1111/j.1365-2486.2004.00881.x
  • 24. Piper, C.S. 1966. Soil and plant analysis. Hans Publishers, Bombay, India, 14.
  • 25. Roessner, U., Nahid, A., Chapman, B., Hunter, A., Bellgard, M. 2011. Metabolomics – The Combination of Analytical Biochemistry, Biology, and Informatics. Comprehensive Biotechnology, Academic Press, Editors: Murray Moo-Young, 13. https://doi.org/10.1016/B978-0-08-088504-9.00052-0
  • 26. Roleček, J., Chytrý, M., Hájek, M., Lvončík, S., Tichý, L. 2007. Sampling design in large-scale vegetation studies: Do not sacrifice ecological thinking to statistical purism!. Folia Geobot 42, 199. https://doi.org/10.1007/BF02893886
  • 27. Smith, P., Davis, S. J., Creutzig, F., Fuss, S., Minx, J., Gabrielle, B., Kato, E., Jackson, R. B., Cowie, A., Kriegler, E., van Vuuren, D. P., Rogelj, J., Ciais, P., Milne, J., Canadell, J. G., McCollum, D., Peters, G., Andrew, R., Krey, V. … Yongsung, C. 2016. Biophysical and economic limits to negative CO2 emissions. Nature Clim Change, 6, 42–50. https://doi.org/10.1038/nclimate2870
  • 28. Thiele-Bruhn, S., Bloem, J., de Vries, F.T., Kalbitz, K., Wagg, C. 2012. Linking soil biodiversity and agricultural soil management, Current Opinion in Environmental Sustainability, 4(5), 523–528. https://doi.org/10.1016/j.cosust.2012.06.004
  • 29. Vanguelova, E.I., Nisbet, T.R., Moffat, A.J., Broadmeadow, S., Sanders, T.G.M., Morison, J.I.L. 2013. A new evaluation of carbon stocks in British forest soils. Soil Use Manag., 29, 169. https://doi.org/10.1111/sum.12025
  • 30. Varnagirytė-Kabašinskienė, I., Žemaitis, P., Armolaitis, K., Stakėnas, V., Urbaitis, G. 2021. Soil Organic Carbon Stocks in Afforested Agricultural Land in Lithuanian Hemiboreal Forest Zone. Forests., 12(11), 1562. https://doi.org/10.3390/f12111562
  • 31. Walkley, A., Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38.
  • 32. Wang, C., Tang, Y., Li, X., Zhang, W., Zhao, C., Li, C. 2020. Negative impacts of plant diversity loss on carbon sequestration exacerbate over time in grasslands. Environ. Res. Lett., 15, 1. https://doi.org/10.1088/1748-9326/abaf88
  • 33. Wang, X., He, C.,Liu, B., Zhao, X., Liu, Y., Wang, Q., Zhang, H. 2020. Effects of Residue Returning on Soil Organic Carbon Storage and Sequestration Rate in China’s Croplands: A Meta-Analysis Agronomy, 10. https://doi.org/10.3390/agronomy10050691
  • 34. Wei, X.Y., Yang, W.Q., Zhang, L., Tan, B., Chen, Y., Dong, Y.L., et al. 2018. Effects of litter addition on soil humification during freeze-thaw cycles in a subalpine forest. Acta Ecol. Sin., 38, 6521–6529. https://doi.org/10.5846/stxb201802060311
  • 35. Wei, X., Yulian, Y., Shen, Y., Chen, Z., Dong, Y., Wu, F., Zhang, L. 2020. Effects of Litterfall on the Accumulation of Extracted Soil Humic Substances in Subalpine Forests. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00254
  • 36. Zribi, L., Chaar, H., Khaldi, A., Hanchi, B., Mouillot, F., Gharbi, F. 2016. Estimate of biomass and carbon pools in disturbed and undisturbed oak forests in Tunisia. Forest Systems., 25, e060. https://doi.org/10.5424/fs/2016252-08062
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dda0fceb-bfb4-46a7-a0e0-bcd58133f258
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.