PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mass spectrometry as a useful tool for identifying new therapeutic targets on the cell surface of pathogenic fungi from the genus Candida

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mass spectrometry (MS) is a universal technique with a wide range of applications, including proteomic studies of different organisms, particularly the characterization and sequencing of proteins isolated from specific cellular compartments. It is used for the identification of elements exposed on the cell surface of microbial pathogens, which are involved in the initial contact with the human host, and then in the further development of infection. Given the increasing frequency of invasive fungal infections caused by pathogenic yeast from the genus Candida, especially among patients with severe immunological impairments, it appears advisable to study the diversity of cell wall proteins that arise during subsequent stages of infection and that are responsible for several important phenomena correlated with pathogenesis. This study employed a liquid chromatograph-coupled mass spectrometer equipped with an electrospray ionization source (ESI), and an ion trap analyser. For tandem mass spectrometry, two approaches for fragmentation of ions - collision-induced dissociation (CID) and electron transfer dissociation (ETD) - were used to analyse the mixtures of peptides generated after tryptic digestion of fungal cell wall proteins (i.e. the “bottom-up” approach). Several surface proteins from Candida spp. were identified which could be potential drug targets and candidates for vaccine development.
Słowa kluczowe
Rocznik
Strony
7--14
Opis fizyczny
Bibliogr. 34 poz., rys., wykr., tab.
Twórcy
  • Department of Analytical Biochemistry, Faculty of Biochemistry, Biotechnology and Biophysics, Jagiellonian University, Krakow, Poland
  • Department of Analytical Biochemistry, Faculty of Biochemistry, Biotechnology and Biophysics, Jagiellonian University, Krakow, Poland
Bibliografia
  • 1. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgramquantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–54.
  • 2. Castillo, L., Calvo, E., Martínez, A.I., Ruiz-Herrera, J., Valentín, E., Lopez, J.A., & Sentandreu, R. (2008). A study of the Candida albicans cell wall proteome. Proteomics, 8(18), 3871-3881. doi: 10.1002/pmic.200800110.
  • 3. Chaffin, W.L. (2008). Candida albicans cell wall proteins. Microbiology and Molecular Biology Reviews, 72(3), 495–544. doi:10.1128/MMBR.00032-07.
  • 4. Crowe, J.D., Sievwright, I.K., Auld, G.C., Moore, N.R., Gow, N.A., & Booth, N.A. (2003). Candida albicans binds human plasminogen: identification of eight plasminogen-binding proteins. Molecular Microbiology, 47(6), 1637-1651.
  • 5. De Groot, P.W., Hellingwerf, K.J., & Klis, F.M. (2003). Ge - nome-wide identification of fungal GPI proteins. Yeast, 20(9), 781-796.
  • 6. Fernández-Arenas, E., Molero, G., Nombela, C., Diez-Orejas, R., & Gil, C. (2004). Low virulent strains of Candida albicans: unravelling the antigens for a future vaccine. Proteomics, 4(10), 3007-3020.
  • 7. Ghannoum, M.A. (2000). Potential role of phospholipases in virulence and fungal pathogenesis. Clinical Microbiology Reviews, 13(1), 122-143.
  • 8. Heilmann, C.J., Sorgo, A.G., Siliakus, A.R., Dekker, H.L., Brul, S., de Koster, C.G., de Koning, L.J., & Klis, F.M. (2011). Hyphal induction in the human fungal pathogen Candida albicans reveals a characteristic wall protein profile. Microbiology, 157(Pt 8), 2297-2307. doi: 10.1099/mic.0.049395-0.
  • 9. Hernáez, M.L., Ximénez-Embún, P., Martínez-Gomariz, M., Gutiérrez-Blázquez, M.D., Nombela, C., & Gil, C. (2010). Identification of Candida albicans exposed surface proteins in vivo by a rapid proteomic approach. Journal of Proteomics, 73(7), 1404-1409. doi: 10.1016/j.jprot.2010.02.008.
  • 10. Hoyer, L.L. (2001). The ALS gene family of Candida albicans. Trends in Microbiology, 9(4), 176-180.
  • 11. Jong, A.Y., Chen, S.H., Stins, M.F., Kim, K.S., Tuan, T.L., & Huang, S.H. (2003). Binding of Candida albicans enolase to plasmin(ogen) results in enhanced invasion of human brain microvascular endothelial cells. Journal of Medical Microbiology, 52(Pt 8), 615-622.
  • 12. Karkowska-Kuleta, J., Kedracka-Krok, S., Rapala-Kozik, M., Kamysz, W., Bielinska, S., Karafova, A., & Kozik, A. (2011). Molecular determinants of the interaction between human high molecular weight kininogen and Candida albicans cell wall: Identification of kininogen-binding proteins on fungal cell wall and mapping the cell wall-binding regions on kininogen molecule. Peptides, 32(12), 2488-2496. doi: 10.1016/j.peptides.2011.10.021.
  • 13. Karkowska-Kuleta, J., Kozik, A., & Rapala-Kozik, M. (2010). Binding and activation of the human plasma kinin-forming system on the cell walls of Candida albicans and Candida tropicalis. Biological Chemistry, 391(1), 97–103. doi: 10.1515/BC. 2009.145.
  • 14. Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227 (5259), 680 – 685.
  • 15. Lee S.H., Jeon J.E., Ahn C.H., Chung S.C., Shin J., Oh K.B. (2013). Inhibition of yeast-to-hypha transition in Candida albicans by phorbasin H isolated from Phorbas sp. Applied Microbiological Biotechnology, 97(7), 3141-3148. doi: 10.1007/s00253-012-4549-3.
  • 16. López-Ribot, J.L., Alloush, H.M., Masten, B.J., & Chaffin, W.L. (1996). Evidence for presence in the cell wall of Candida albicans of a protein related to the hsp70 family. Infection and Immunity, 64(8), 3333-3340.
  • 17. McCreath, K.J., Specht, C.A., & Robbins, P.W. (1995). Molecular cloning and characterization of chitinase genes from Candida albicans. Proceedings of the National Academy of Sciences of the United States of America, 92(7), 2544-2448.
  • 18. Moazeni M., Khorramizadeh M.R., Teimoori-Toolabi L., Noorbakhsh F., Fallahi A.A., Rezaie S. (2012). Down-regulation of the ALS3 gene as a consequent effect of RNA-mediated silencing of the EFG1 gene in Candida albicans. Iran Biomedical Journal, 16(4): 172-178.
  • 19. Montagnoli C., Sandini S., Bacci A., Romani L., La Valle R. 2004. Immunogenicity and protective effect of recombinant enolase of Candida albicans in a murine model of systemic candidiasis. Medical Mycology 42 319-324.
  • 20. Nawrot, U., Pajączkowska, M., Fleischer, M,, Przondo-Mordarska, H,, Samet, A., Piasecka-Pazik, D., Komarnicka, J., Sulik-Tyszka, B., Swoboda-Kopeć, E., Cieślik, J., Mikucka, A. Gospodarek, E., Ozorowski, T., Mól, A,, Tryniszewska, E., Kłosowska, W., Krawczyk, M., Golec, K., Szymaniak, L., Giedrys-Kalemba, S., Bilska, I., Prawda-Zołotar, J., Juszczyk-Grudzińska, M., Wróblewska, M., & Burdynowski, K. (2013). Candidaemia in polish hospitals - a multicentre survey. Mycoses, 56(5), 576-81. doi: 10.1111/myc.12077.
  • 21. Nombela, C., Gil, C., & Chaffin, W.L. (2006). Nonconventional protein secretion in yeast. Trends in Microbiology, 14(1), 15–21.
  • 22. Pardo, M., Ward, M., Pitarch, A., Sánchez, M., Nombela, C., Blackstock, W., & Gil, C. (2000). Cross-species identification of novel Candida albicans immunogenic proteins by combination of two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Electrophoresis, 21(13), 2651-2659.
  • 23. Pitarch, A., Abian, J., Carrascal, M., Sánchez, M., Nombela, C., & Gil, C. (2004). Proteomics-based identification of novel Candida albicans antigens for diagnosis of systemic candidiasis Chemistry and Pharmacy 13 Justyna Karkowska-Kuleta, Oliwia Bocheńska in patients with underlying hematological malignancies. Proteomics, 4(10), 3084-3106.
  • 24. Pitarch, A., Nombela, C., & Gil, C. (2008). Cell wall fractionation for yeast and fungal proteomics. Methods in Molecular Biology, 425, 217-239. doi: 10.1007/978-1-60327-210-0_19.
  • 25. Poltermann, S., Kunert, A., von der Heide, M., Eck, R., Hartmann, A., & Zipfel, P.F. (2007). Gpm1p is a factor H-, FHL-1-, and plasminogen-binding surface protein of Candida albi cans. Journal of Biological Chemistry, 282(52), 37537-37544.
  • 26. Sandovsky-Losica H., Chauhan N., Calderone R., Segal E. (2006) Gene transcription studies of Candida albicans following infection of HEp2 epithelial cells. Medical Mycology, 44(4):329-334.
  • 27. Sanglard, D., & White, T.C. (2006). Molecular principles of antifungal drug resistance. In J. Heitman, S.G. Filler, J.E. Jr Edwards & A.P. Mitchell (Eds.), Molecular principles of fungal pathogenesis (pp.197-212). Washington DC, USA: ASM Press.
  • 28. Seweryn, E., Pietkiewicz, J., Szamborska, A., & Gamian, A. (2007). [Enolase on the surface of prockaryotic and eukaryotic cells is a receptor for human plasminogen]. Postepy Higieny i Medycyny Doswiadczalnej (Online), 15, 672-682.
  • 29. Shibasaki S., Aoki W., Nomura T., Miyoshi A., Tafuku S., Sewaki T., Ueda M. (2013). An oral vaccine against candidiasis generated by a yeast molecular display system. Pathogens and Disease, 69(3):262-268. doi: 10.1111/2049-632X.12068.
  • 30. Vecchiarelli, A., Pericolini, E., Gabrielli, E., & Pietrella, D. (2012). New approaches in the development of a vaccine for mucosal candidiasis: progress and challenges. Frontiers of Microbiology, 3, 294. doi: 10.3389/fmicb.2012.00294. eCollection 2012.
  • 31. Vialás, V., Perumal, P., Gutierrez, D., Ximénez-Embún, P., Nombela, C., Gil, C., & Chaffin, W.L. (2012). Cell surface shaving of Candida albicans biofilms, hyphae, and yeast form cells. Proteomics, 12(14), 2331-2339,doi: 10.1002/pmic.201100588.
  • 32. Wu, S.L., Hühmer, A.F., Hao, Z., & Karger, B.L. (2007). Online LC-MS approach combining collision-induced dissociation (CID), electron-transfer dissociation (ETD), and CID of an isolated charge-reduced species for the trace-level characterization of proteins with post-translational modifications. Journal of Proteome Research, 6(11), 4230-4244.
  • 33. Zhang Y., Cai C., Yang Y., Weng L., Wang L. (2011) Blocking of Candida albicans biofilm formation by cis-2-dodecenoic acid and trans-2-dodecenoic acid. Journal of Medical Microbiology, 60(Pt 11):1643-1650. doi:10.1099/jmm.0.029058-0.
  • 34. Zhao X., Oh S.H., Yeater K.M., Hoyer L.L. (2005) Analysis of the Candida albicans Als2p and Als4p adhesins suggests the potential for compensatory function within the Als family. Microbiology, 151(Pt 5):1619-1630. 14
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dd9fc7be-a32c-45c6-b605-40fdbb2a5a33
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.